A beautiful integral for the mind

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 ต.ค. 2024
  • This problem is from the HMMT mathematics contest. It is a good calculus exercise.

ความคิดเห็น • 58

  • @md2perpe
    @md2perpe 3 หลายเดือนก่อน +39

    Another way: First set x = e^t. This transforms the integral to \int_0^\infty t^{2011} e^{-2010t} dt. Then set t = s/2010 to get 1/(2010^2012) \int_0^\infty s^{2011} e^{-s} ds. The integral \int_0^\infty s^{n} e^{-s} ds should be known to be n!; thus we end up with 2011!/(2010^2012).

    • @SidneiMV
      @SidneiMV 3 หลายเดือนก่อน

      Great!

    • @vietdungle1237
      @vietdungle1237 3 หลายเดือนก่อน

      Right, I remember that back in the college, this is one of 2 forms of Gamma function

    • @eduardionovich4425
      @eduardionovich4425 หลายเดือนก่อน

      Решение намного короче авторского. Видно,что обладатель бейсболки далеко не всегда находит лучшие варианты.

  • @geraltofrivia9424
    @geraltofrivia9424 3 หลายเดือนก่อน +12

    Great content. Please go on with this kind of math contest content, that's interesting.

  • @maxgoldman8903
    @maxgoldman8903 3 หลายเดือนก่อน +8

    This’s just the Laplace transform of t^n, where t=ln(x) and n=2011. The answer is 2011!/(2010)^2012. Without referring to the Laplace transform table, we can use the integration by part, along with mathematical induction to get the general formula for n, which is n!/(n-1)^(n+1), thereby the given answer.

  • @sobolzeev
    @sobolzeev 3 หลายเดือนก่อน +10

    The exposition of the idea is a bit chaotic. I would propose to consider
    Iₙ = ∫(lnx)ⁿdx/xᵐ⁺¹. Integration by parts (IBP stands for Initial-Boundary Problem rather than this) implies
    Iₙ= (n/m) Iₙ₋₁
    with I₀=1/m. By induction,
    Iₙ = n!/mⁿ⁺¹.
    Finally, choose n=2011, m=2010.

  • @baidonchandipo2804
    @baidonchandipo2804 2 หลายเดือนก่อน +2

    Wow I love the way you notice your mistakes as you are solving. When I observe a mistake while you are solving, I know in my mind that you will figure it out

    • @PrimeNewtons
      @PrimeNewtons  2 หลายเดือนก่อน

      So nice of you

  • @RakeshKumar-rc4sj
    @RakeshKumar-rc4sj 3 หลายเดือนก่อน +8

    An easy approach to follow is using Laplace transforms, substitute x=exp(t) so that integral transforms to integral 0 to ♾️, exp(-2010)t.t^2011dt which yields (2011)!/(2010)^2012 using Laplace transform of t^n as gamma(n+1)/s^n+1

    • @souverain1er
      @souverain1er 3 หลายเดือนก่อน

      How do you deal with the lower bound using this approach? Change of variables?

  • @audreychambers3155
    @audreychambers3155 3 หลายเดือนก่อน +2

    I think a more general way of expressing this technique is to define I_{a,b} as the integral of (ln x)^a x^-b over the interval. This way, you only need to integrate by parts once to see that I_{a,b} = (a/b) I_{a-1,b}.

  • @sobolzeev
    @sobolzeev 3 หลายเดือนก่อน +9

    The substitution u=lnx works here perfectly. It transforms the integral to
    ∫₀^∞ u²⁰¹¹exp(-2010u)du. Now another substitution 2010u=s transforms it to
    2010⁻²⁰¹²×
    ∫₀^∞ s²⁰¹¹exp(-s)ds.
    The latter integral is Γ(2012)=2011!. Hence the answer: 2011!2010⁻²⁰¹².
    It might be interesting to estimate this value, which is but a huge number divided by another huge number. For instance, by the Stirling formula:
    n! ≈ √(2πn )(n/e)ⁿ.
    Or nⁿ≈ n! eⁿ/√(2πn).
    Its application with n=2010 gives us an estimate of the integral as
    ( √(4020π )2011! ) /
    (2010! 2010²e²⁰¹⁰)

    √(2π )/(√(2010) e²⁰¹⁰).
    Thus, the value of the integral is very small. This is because ln(x)/x is a small number for x>1. It doesn't exceed 1/e (achieved at x=e). So (ln(x)/x)ⁿ vanishes as n→∞, and quite rapidly.

    • @alphazero339
      @alphazero339 3 หลายเดือนก่อน

      @@sobolzeev sir, I like that and You. May I know whether You use any specific application or extension on your mobile phone to write mathematical symbols or You work on computer?

    • @sobolzeev
      @sobolzeev 3 หลายเดือนก่อน +1

      @@alphazero339 It was written from a Pixel phone, with a use of Math Keyboard. It is not 100% good for writing Maths. However, it contains some symbols and a wide range of subscript and superscript symbols in addition to Google keyboard, also rich in symbols.

  • @vortex6132
    @vortex6132 3 หลายเดือนก่อน +1

    13:45 for anyone confused by this, the x actually comes from the denominator of the ln(x) integration part (for du as shown on the left board), since x^-2010 = 1/x^2010, leaving the parts to be multiplied (to be multiplied by the denominator factor of x) is always nulls out the +1 to the exponent from the original anti-derivative to stay the same at 1/x^2011 (or x^-2011) no matter how many integrations you perform. i get what he meant though.

  • @Khaled_HR13_kardashev
    @Khaled_HR13_kardashev 3 หลายเดือนก่อน +6

    with you math is not bored anymore!

  • @naivedyam2675
    @naivedyam2675 2 หลายเดือนก่อน +1

    I solved it in the head in under 30 seconds. Here is my solution.
    1. Put ln x = t.
    2. Multiply and divide by x so that you get the term 1/x outside the expression in the power seperately to make your dx.
    3. Since ln x was t, x = e^t. Also, the limts of integral would change from 1 to inf to 0 to inf. And we have our new integral - e^t(t/e^t)^2011.
    4. Further simplification makes it e^-2010t * t^2011. With the limits from 0 to inf.
    5. This integral looks familiar isnt it? Only if I had s inplace of 2010 and n inplace of 2011... so let me just replace it with those values.
    6. So it's now integral from 0 to inf of e^-st * t^n dt. Bingo!!! That's the Laplace Transform of t^n and we know its formula is n!/s^(n+1).
    7. What now? Just replace s with 2010 and n with 2011 and it's done! Done in the head without solving any integral or doing any calculations except for some substitutions! And that's how you solve a 19 min long solution in your head in less than a minute (in about 10-15 seconds to be precise if you are precise if you are in practice of solving mentally)

  • @mihaipuiu6231
    @mihaipuiu6231 3 หลายเดือนก่อน +1

    1. I love your cap 2. Your writing and your explanation are perfect 3. You convinced me...your gran(gran(gran(.....(.granpa is NEWTON.

    • @PrimeNewtons
      @PrimeNewtons  3 หลายเดือนก่อน

      🤣🤣🤣🤣

  • @holyshit922
    @holyshit922 3 หลายเดือนก่อน +1

    Substitution gives Gamma function
    but we can derive reduction by parts and use it
    Do you want proposition for video
    Calculate d^n/dt^n (1/sqrt(1-2xt+t^2))
    My observations
    d^n/dt^n (1/sqrt(1-2xt+t^2)) = \sum\limits_{k=0}^{\lfloor\frac{n}{2}
    floor}\frac{a_{n-2k}(x - t)^{n-2k}}{(1 - 2xt + t^2)^{\frac{1}{2} + n - k}}
    Coefficients a_{n-2k} are integers
    To calculate them calculate
    d^{n+2}/dt^{n+2} and rearrange terms in the sum

  • @gdtargetvn2418
    @gdtargetvn2418 3 หลายเดือนก่อน

    Here is a fun way. Let's just start by the function I(a) = Int[xᵃ, 1, inf] dx (a < -1)
    First step is to simply integrate this in terms of x. Everyone knows I(a) = xᵃ ⁺ ¹ / (a+1) | 1 -> inf, which is just -1 / (a+1) (please note that we are working under the assumption that a < -1, if a is not in this range then the integral does not exist)
    Here comes the fun part. We will use Leibniz Integral Rule by simply differentiating under the integral sign, and don't forget to differentiate the RHS as well:
    I'(a) = Int[ ∂/∂a(xᵃ), 1, inf ] dx = d/da [-1 / (a+1)]
    = Int[ xᵃ * ln(x), 1, inf] dx = 1 / (a+1)²
    Keep differentiating both sides!
    I"(a) = Int[ ∂/∂a [xᵃ * ln(x)], 1, inf ] dx = d/da [1 / (a+1)²]
    = Int[ xᵃ * ln²(x), 1, inf] dx = -2 / (a+1)³
    I'''(a) = Int[ ∂/∂a [xᵃ * ln²(x)], 1, inf ] dx = d/da [1 / (a+1)²]
    = Int[ xᵃ * ln³(x), 1, inf] dx = 3! / (a+1)⁴
    From now, I think you already see a pattern here, so let's just differentiate until the n-th degree.
    I'ⁿ(a) = Int[ xᵃ * lnⁿ(x), 1, inf] dx = (-1)ⁿ ⁺ ¹.n! / (a+1)ⁿ ⁺ ¹
    We want to calculate the integral when a = -2011, and n = 2011, so substitute:
    Int[ x ⁻ ² ⁰ ¹ ¹ * ln² ⁰ ¹ ¹(x), 1, inf] dx = (-1)² ⁰ ¹ ².2011! / (-2011 + 1)² ⁰ ¹ ² = 2011! / 2010² ⁰ ¹ ².

  • @ruud9767
    @ruud9767 3 หลายเดือนก่อน

    Nice problem. Thanks for the video.
    This would be a good integral to practice proof by induction.

  • @fatihsrk
    @fatihsrk 3 หลายเดือนก่อน

    You forgot to change the limits of integration while taking the minus out after IBP

  • @thunderpokemon2456
    @thunderpokemon2456 3 หลายเดือนก่อน

    This problem unlike other problems require creative mind to be used nice problem

  • @M.Euclid
    @M.Euclid 3 หลายเดือนก่อน

    Hi prime, I'm kind of confusing from the 2nd board - third line int lnx²⁰⁰⁹ is not where to be found, I need to inquire, can you pls explain this because it looks more challenging to me. Thx

  • @frendlyleaf6187
    @frendlyleaf6187 3 หลายเดือนก่อน

    I tried to generalize this for the indefinite integral of any (ln(x)/x)^k and got something like this:
    - k!/(x^(k-1)) ( sum(n=0, k-1)[(ln(x))^(k-n)/((k-n)! (k-1)^(n+1))] + 1/((k-1)^(k+1)) ) +C
    Can someone verify this? Also I've put some values into this on a calculator and noticed that it only works for positive real values of k and becomes undefined or completely off in case of negative k, I'd like to know why this is the case.

  • @SomePerson-oz2xt
    @SomePerson-oz2xt 3 หลายเดือนก่อน

    That chalk is so nice

  • @mohamadaliesfahani1998
    @mohamadaliesfahani1998 3 หลายเดือนก่อน

    Woooooow

  • @avip3837
    @avip3837 3 หลายเดือนก่อน

    wouls this integral be a good candidate for Feinman's method?

    • @Samir-zb3xk
      @Samir-zb3xk 3 หลายเดือนก่อน +2

      Yes but you have to take the derivative 2011 times, take the derivative 3 or 4 times and the pattern will emerge

  • @AyanMandal-pk8jm
    @AyanMandal-pk8jm 3 หลายเดือนก่อน

    Best approach is using gamma function

    • @naivedyam2675
      @naivedyam2675 2 หลายเดือนก่อน

      An even better one is using Laplace Transform

  • @mab9316
    @mab9316 3 หลายเดือนก่อน

    2010-2011-2012

  • @hfhffhdhd8523
    @hfhffhdhd8523 3 หลายเดือนก่อน +1

    I tried it first by own self and came to watch the vdo my ans matches you

  • @Baltie3
    @Baltie3 3 หลายเดือนก่อน

    Your investigation leads to a proper solution but I feel that you miss an inductive proof.

  • @roythoppilchacko8358
    @roythoppilchacko8358 3 หลายเดือนก่อน

    Sir you are great 😊

  • @Vi-kun
    @Vi-kun 3 หลายเดือนก่อน +1

    Sir can you explain why there is no +c at the end?

    • @SeriotonTeaches
      @SeriotonTeaches 3 หลายเดือนก่อน +3

      Because it is an improper definite integral. Look on the internet the definition of definite integral, indefinite integral and improper integral. You will totally understand!😊

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 3 หลายเดือนก่อน

      It describes the area of a specific function - the function on the inside for 1≤x≤∞. There's only one area, so we can only expect one answer.

  • @ginopaperino2608
    @ginopaperino2608 3 หลายเดือนก่อน

    Can you make some videos on integrals (sostitution and integration by part) or recommend me some other videos to watch pls. Because i have some pretty basic knoledges of this two methods but i did not understand much.

    • @tai0fps
      @tai0fps 3 หลายเดือนก่อน

      + i agree, would be nice to have some videos explaining concepts, not just using them and assuming the person watching knows them

    • @Samir-zb3xk
      @Samir-zb3xk 3 หลายเดือนก่อน

      @@tai0fps If you need to brush up on basic integration techniques Im sure there are hundreds of example problems on youtube, just do a quick search

    • @PrimeNewtons
      @PrimeNewtons  3 หลายเดือนก่อน

      I have made more videos on ALL integration techniques than any other topic on this channel. Just search. I also assume you are new to my channel.

    • @ginopaperino2608
      @ginopaperino2608 3 หลายเดือนก่อน

      @@PrimeNewtons thank u

  • @francescopaoloteresi3875
    @francescopaoloteresi3875 หลายเดือนก่อน

    Con Laplace si fa prima

  • @shuffle2915
    @shuffle2915 3 หลายเดือนก่อน

    thank u sir

  • @killerfc
    @killerfc 3 หลายเดือนก่อน

    Wow!

  • @RYedukrishnan-cn5ft
    @RYedukrishnan-cn5ft 3 หลายเดือนก่อน +1

    Plzz Give me a hi sir ❤

  • @troymingming
    @troymingming 3 หลายเดือนก่อน

    =2011!/((2010)²⁰¹²)

  • @maxvangulik1988
    @maxvangulik1988 3 หลายเดือนก่อน

    u=ln(x)
    du=dx/x
    dx=e^u•du
    I=int[0,♾️](u^2011•e^-2010u)du
    p=2010u
    dp=2010du
    I=2010^-2012•int[0,♾️](p^2011•e^-p)dp
    I=2011!/(2010^2012)

  • @ShanBojack
    @ShanBojack 3 หลายเดือนก่อน

    I just used gamma function

  • @sajuvasu
    @sajuvasu 3 หลายเดือนก่อน

    First pls pin

  • @XO0X-cg5kv
    @XO0X-cg5kv 3 หลายเดือนก่อน

    he forgot to write down dx

  • @沈博智-x5y
    @沈博智-x5y 3 หลายเดือนก่อน

    I used u sub u = ln(x)
    then noticed the integral was in the form of a 'laplace transform'
    I = integral from 1 to infty of (lnx/x)^2011 dx
    u = lnx => x = e^u => x^2010 = (e^u)^2010 = e^(2010u)
    du/dx = 1/x
    at x = 1, u = 0
    as x approaches infty, u approaches infty too
    I = integral from 1 to infty of (lnx)^2011 / x^2011 dx
    I = integral from 1 to infty of ((lnx)^2011 / x^2010)(1/x) dx
    I = integral from 0 to infty of (u^2011 / e^(2010u) du
    since u is a dummy variable and we are evaluating a definite integral, let u = t
    I = integral from 0 to infty of (u^2011)e^(-2010u) du
    I = integral from 0 to infty of (t^2011)e^((-2010)t) dt
    Note L{t^n} laplace transform of t^n = integral from 0 to infty of (t^n)e^(-st) dt = n!/s^(n+1) where s > 0
    So our original integral I = L{t^2011} | _ s = 2010
    Therefore I = 2011!/2010^(2011+1) = 2011!/2010^2012
    (Scrolling down I can see someone did a similar method)