Can we have a rectangle with perimeter = 1000 cm but area = 1 cm^2?

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 ธ.ค. 2024

ความคิดเห็น • 47

  • @bprpmathbasics
    @bprpmathbasics  8 ชั่วโมงที่ผ่านมา +4

    3:44 here’s the video How to complete the square
    th-cam.com/video/cdly18802P8/w-d-xo.html

  • @bobh6728
    @bobh6728 8 ชั่วโมงที่ผ่านมา +59

    The answer is yes. The maximum is always a square, the minimum approaches 0. So since 1 is between the max and min, the answer is yes.

  • @Silvar55x
    @Silvar55x 7 ชั่วโมงที่ผ่านมา +7

    When completing the square, I find it easier to add the term as a square, and keep it such on the left side to avoid going back-and-forth with expansion:
    ℓ² − 500ℓ = −1
    ℓ² − 500ℓ + 250² = −1 + 250²
    (ℓ − 250)² = −1 + 62500
    ℓ = 250 ± √62499

  • @Neun_owo
    @Neun_owo 8 ชั่วโมงที่ผ่านมา +11

    I love that when it comes to these types of questions, there are usually many ways to approach it. Since I learnt AM-GM recently fromt bprp, let's try to solve the question with it!
    We know that the rectangle's perimeter is 1000, It's length(x) and width(y) should add up to 500, so x+y=500.
    Using AM-GM inequality, (x+y)/2>=sqrt(xy), as x+y=500, 250>=sqrt(xy), xy

    • @XenoFeisher1
      @XenoFeisher1 5 ชั่วโมงที่ผ่านมา

      I'm pretty sure the sum and product of roots should not be used here cuz there's 2 variables which just so happen to be roots. Can you explain cuz I feel like I'm missing something here and you are right

  • @guidoreitsma8149
    @guidoreitsma8149 9 ชั่วโมงที่ผ่านมา +20

    It's very, very, very, very long and thin, just like Chile.

    • @DemanaJaire
      @DemanaJaire 7 ชั่วโมงที่ผ่านมา +1

      Chile is so long and thin, people there only talk about south and north, but never about east and west. lol

    • @terra_sussy255
      @terra_sussy255 2 ชั่วโมงที่ผ่านมา

      Map Men reference!!!

  • @IITDREAMresonance
    @IITDREAMresonance 9 ชั่วโมงที่ผ่านมา +11

    long rectangle?

  • @AllanPoeLover
    @AllanPoeLover 5 ชั่วโมงที่ผ่านมา +2

    細得就像一根針一樣

  • @xinpingdonohoe3978
    @xinpingdonohoe3978 9 ชั่วโมงที่ผ่านมา +7

    One should be able to contain any chosen area within an arbitrary perimeter, I'd have thought. If we extend past rectangles, we could even contain such finite areas within infinite perimeters.

    • @dhyeykulkarni3989
      @dhyeykulkarni3989 9 ชั่วโมงที่ผ่านมา

      wonderful idea! let's prove it?

    • @peterhawes9680
      @peterhawes9680 8 ชั่วโมงที่ผ่านมา

      The perimeter has to be at least 4*(sqrt of area) with equality when it is a square.

    • @charlesbarrow803
      @charlesbarrow803 7 ชั่วโมงที่ผ่านมา

      Koch snowflake infinite perimeter finite volume

  • @MadaraUchihaSecondRikudo
    @MadaraUchihaSecondRikudo 5 ชั่วโมงที่ผ่านมา +1

    I usually like to go to the extremes to determine whether something is possible or not. The biggest possible area would be a square, that's easy to see. The smallest possible area would be at the limit where one side goes to 0, because the other side would go to 500 (a finite number) and 500 * 0 = 0. So since 1 is between 0 and 62500 (which is 250^2 which is the area of the square case), there must be some configuration of lengths to give you 1 as the area.

  • @wes9627
    @wes9627 9 ชั่วโมงที่ผ่านมา +3

    x+y=500; x=250+z; y=250-z; xy=(250+z)(250-z)=1; z^2=250^2-1; z=√(250^2-1); x=250+√(250^2-1) and y=250-√(250^2-1)

  • @saqibmanzoor5106
    @saqibmanzoor5106 8 ชั่วโมงที่ผ่านมา +1

    Length =499.998cm and width= 0.0002cm

  • @mde189
    @mde189 5 ชั่วโมงที่ผ่านมา

    just set up two equations in system, you'll have: a+b=500, ab=1
    Use Vietta's theorem (formulas) and set up the quadratic equation: x^2-500x+1=0
    Find roots and you'll have the exact same answer without using calculus.

  • @MrPaulc222
    @MrPaulc222 4 ชั่วโมงที่ผ่านมา

    Yes, but the long length would be very long and the short length, tiny, and it may have to be a very close approximation if in decimal.
    A more exact look:
    2x + 2y = 1000 (equation 1)
    xy = 1 (equation 2)
    Rearrange it to 2x = 1,000 - 2y
    (2y(1000-2y) = 1
    2000y - 4y^2 = 1
    4y^2 - 2000y + 1 = 0
    (2000+or-sqrt(4,000,000 - 4*4*2))/2 = y
    (2,000+or-sqrt(3,999,968)/2 = y
    (2,000+or-2*sqrt(999,992))/4
    (2,000+or-4*sqrt(249,998)
    The square root approximates to 499.998, so the other direction would be approx 0.002
    500+or-2*sqrt(6,249))/2
    It would probably be possible to have an exact representation if leaving in surd form.

  • @shadeblackwolf1508
    @shadeblackwolf1508 4 ชั่วโมงที่ผ่านมา

    That parameter will have two long and two short sides. We also know the surface is 1 (unit does not matter). A x B is only 1 if B = 1/A. Therefore if a long side is x, then 2x + 2/x = 1000. Dividing by 2, x+1/x = 500. As X is the long side, that means 1/x is less than 1, so most of the contribution will be from X. Now, a calculator can give a precise number, a pc keyboard makes long comments easier, so i'm gonna guestimate that x is about 500 cm. That means to get to a surface of 1, the short side is about 0.002 cm, or 20 microns. That means that for all practical purposes, this thing would be flat. How good is this estimate? Well, we got a circumference of 1000.004 cm, meaning the deviation is 0.0004%. That is way more precise than the precision of the original question. Yes, i know you can get an exact solution by multiplying all terms by X and solving the quadratic, but phone keyboard

  • @programaths
    @programaths 6 ชั่วโมงที่ผ่านมา

    Graphically, if the bottom left corner of the rectangle is on the origin and only the top right corner can move, then that corner is restricted to a line as such that 500=x+y or y=500-x.
    That line is continuous, so one of its point represent a rectangle of area=1cm.

  • @anonymouscheesepie3768
    @anonymouscheesepie3768 2 ชั่วโมงที่ผ่านมา

    A = bh
    P = 2b + 2h
    2b + 2h = 1000
    bh = 1
    b = 1/h
    2/h + 2h - 1000 = 0
    h^2 - 500h + 1 = 0
    h = 0.002 or 499.998 cm
    b = 499.998 or 0.002 cm
    One side is 499.998 cm, and another side is 0.002 cm.

  • @RylanceStreet
    @RylanceStreet 8 ชั่วโมงที่ผ่านมา

    This is the sort of problem where an approximation can give a sufficiently accurate answer far quicker than solving a quadratic equation.
    With such a large perimeter and small area the rectangle is obviously going to be very long and thin, and the length will be slightly less than half the perimeter divided by the area i.e. 500 cm. Now divide the area by the approximate length to get the width of 0.002 cm. Then subtract the width from the first estimated length to get 499.998 cm. Close enough for all practical purpose!

  • @1nfius948
    @1nfius948 7 ชั่วโมงที่ผ่านมา

    i would've just drawn a straight line to represent that rectangle

  • @Reader_Raccoon
    @Reader_Raccoon 8 ชั่วโมงที่ผ่านมา +1

    guys, I've got confused at 3:34 anyone knows a video where he explains it???

    • @bprpmathbasics
      @bprpmathbasics  8 ชั่วโมงที่ผ่านมา +1

      Here it is
      th-cam.com/video/cdly18802P8/w-d-xo.html

    • @abc4953xyz
      @abc4953xyz 8 ชั่วโมงที่ผ่านมา

      He just wanted to simplify the left hand side in the (a - b)² format to make the equation easier to solve.
      l² - 2×½(500)×l + (½(500))² = (l - ½(500))² = (l - 250)²

  • @nishisingh227
    @nishisingh227 6 ชั่วโมงที่ผ่านมา

    Yeah you can. It would be a rectangle as thin as a bold line.

  • @Thagrynor
    @Thagrynor 7 ชั่วโมงที่ผ่านมา

    Always love your videos, but the best part of this video was watching you try to draw that rectangle near the end lol .... I feel your pain with trying to draw things into even an approximation or example of what the scale sort of looks like when one dimension is ludicrously small relative to the other. Great video as always though. 🙂

  • @jamescollier3
    @jamescollier3 8 ชั่วโมงที่ผ่านมา +2

    7:38 WHAT!!!? I've been searching Google shopping for the "tap to erase board".... unsubscribe .. 😅😊 kidding of course

  • @martinforro5696
    @martinforro5696 3 ชั่วโมงที่ผ่านมา

    499,998*0,002 = 0.999996 so your solution is only approximate. The exact roots of your equation are irrational numbers. You can have it in your head as a mathematical construct, but you will never be able to exactly construct it on a blackboard.

  • @alclelalclel
    @alclelalclel 8 ชั่วโมงที่ผ่านมา

    Let's call the sides of the rectangle a and b
    A = a*b, but the area is 1 so a*b=1
    1/a = b
    a*(1/a)=1
    for the perimeter we use the formula 2a + 2b = 1000
    divide by 2
    a + b = 500
    a+1/a = 500
    common denominator --> (a^2+1)/a = 500 --> a^2 + 1 = 500a
    a^2 - 500a + 1 = 500
    we get two solutions
    a approx. 0.002
    a= 499.998
    they are eachothers reciprocals, so we can call one of them b
    a approx. 0.002
    b= 499.98
    and that's our solution

  • @Asparagus114
    @Asparagus114 2 ชั่วโมงที่ผ่านมา

    Dirac delta function

  • @sugarfrosted2005
    @sugarfrosted2005 8 ชั่วโมงที่ผ่านมา

    Yes non constructively. Maximized is a square, minimized is the degenerate case where height equals 0.

  • @volcarona8401
    @volcarona8401 7 ชั่วโมงที่ผ่านมา

    A = a×b = 1 (cm²)
    P = 2(a+b) = 1000 (cm)
    b = A/a → P = 2(a + 1/a) = 1000
    2(a + 1/a) = 1000 | ÷2
    a + 1/a = 500 | ×a
    a² + 1 = 500a | -500a
    a² - 500a + 1 = 0
    Use -p/2 ± √(p²/4 - q):
    a = -(-500)/2 ± √((-500)²/4 - 1)
    a = 250 ± √(250000/4 -1)
    a = 250 ± √(62499)
    a_1 ≈ 499.998
    a_2 ≈ 0.002
    "Coincidentally", whichever value you pick for a, the other value is your b.

  • @Metaverse-d9f
    @Metaverse-d9f 8 ชั่วโมงที่ผ่านมา

    Use Vieta's theorem

  • @deosisx
    @deosisx 8 ชั่วโมงที่ผ่านมา

    This is very easy after shape with infinite perimeter and finite area

  • @dacianbonta2840
    @dacianbonta2840 7 ชั่วโมงที่ผ่านมา

    obviously

  • @itsphoenixingtime
    @itsphoenixingtime 8 ชั่วโมงที่ผ่านมา

    Lil john house type beat

  • @SlideRSB
    @SlideRSB ชั่วโมงที่ผ่านมา

    Not drawn to scale.

  • @a.tsuruya8
    @a.tsuruya8 8 ชั่วโมงที่ผ่านมา

    Can we have a rectangle with perimeter = 1680cm, and area = 176331cm^2?

    • @lagomoof
      @lagomoof 8 ชั่วโมงที่ผ่านมา +1

      Ah-ha. This feels more like an AndyMath kind of question. I don't think bprp leans into the memes quite so much!

    • @-wx-78-
      @-wx-78- 8 ชั่วโมงที่ผ่านมา

      (1680/4)±√[(1680/4)²−176331] = 420±√69 are the sides.

  • @m.h.6470
    @m.h.6470 7 ชั่วโมงที่ผ่านมา

    Solution:
    YES.
    2a + 2b = 1000
    a * b = 1
    2a + 2b = 1000 |:2
    a + b = 500 |-a
    b = 500 - a
    a * (500 - a) = 1
    500a - a² = 1 |+a² -500a
    0 = a² - 500a + 1
    a = -(-500)/2 ± √((500/2)² - 1)
    a = 250 ± √(500²/4 - 4/4)
    a = 250 ± √(250000 - 4)/√4
    a = 250 ± √249996/2
    a ≅ 250 ± 499.996/2
    a ≅ 250 ± 249.998
    a₁ ≅ 0.002
    a₂ ≅ 499.998
    since a₁ + a₂ = 500 and b = 500 - a, if a takes the small value, b takes the large value and vice versa.

  • @manudude02
    @manudude02 4 ชั่วโมงที่ผ่านมา

    Thumbs down, rectangle not drawn to scale.

  • @nimmira
    @nimmira 8 ชั่วโมงที่ผ่านมา

    Anyone familiar with Photoshop, this is kinda like the "line marquee tool" (or "line selection tool") where you can choose a row or a column of pixels