This is one of the coolest integrals ever solved

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ธ.ค. 2024

ความคิดเห็น • 58

  • @sammtanX
    @sammtanX 4 หลายเดือนก่อน +24

    "terribly sorry about that"
    "ouhhkayy cool"

  • @Calcprof
    @Calcprof 4 หลายเดือนก่อน +46

    When I took Complex Analysis from Nahari, I couldn't tell his ζ's from his ξ's. Like yours. But great integral!

    • @xleph2525
      @xleph2525 4 หลายเดือนก่อน +2

      What is this cult of Nahari you speak of? How might I seek out membership?

    • @Calcprof
      @Calcprof 4 หลายเดือนก่อน

      @@xleph2525 en.wikipedia.org/wiki/Zeev_Nehari

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +10

      Other than that, nihari is also the national dish of Pakistan

    • @tomasstride9590
      @tomasstride9590 4 หลายเดือนก่อน +1

      @@maths_505 One thing that confuses me is why when finding the residue you did not just pick out the 1/z term from the series for zeta(1+z)/z . The expression was already in the form of a Laurent series so there was no need to do any work at all.

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +1

      @@tomasstride9590 better for teaching purposes to be more detailed. Perhaps someone watching the video isn't familiar with contour integration so doing a bit of extra work will encourage them to do a bit of research without feeling too lost.

  • @orionspur
    @orionspur 4 หลายเดือนก่อน +17

    Very cool. Also appreciating that your Zeta looks just like the Tasmanian Devil. 🌪️

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +8

      @@orionspur I've never felt more proud of the way I write zeta 😂

  • @sbares
    @sbares 4 หลายเดือนก่อน +3

    4:36 No need to calculate the residue like that. The residue is the -1st term of the Laurent expansion (this can be, and often is, taken as the *difinition* of the residue), and you already helpfully wrote that up.

  • @theelk801
    @theelk801 4 หลายเดือนก่อน +16

    you didn’t need to take the derivative, you already had the laurent series so you just find the coefficient of z^-1

    • @CliffHanger-fg6uy
      @CliffHanger-fg6uy 4 หลายเดือนก่อน +3

      Exactly. I wanted to see if someone else had pointed it out.
      Way over-complicated the process of finding the residue.
      At least the way I was taught, the residue is originally just the coefficient of z^-1 in the Laurent series. From that, the formula the video gives using derivatives and multiplication by z is easily derived.

    • @Klemvar
      @Klemvar 4 หลายเดือนก่อน

      agreed, once a Laurent expansion is given there is no need to do further computations (so this integral depends only on the Laurent expansion of the zeta function)

  • @mcalkis5771
    @mcalkis5771 4 หลายเดือนก่อน +10

    Failed my driving exam today. These videos really help me cope. Thank you Kamal.

    • @jamiepianist
      @jamiepianist 4 หลายเดือนก่อน +1

      You'll get it next time!

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +2

      @@mcalkis5771 you'll get it next time bro

  • @kingzenoiii
    @kingzenoiii 4 หลายเดือนก่อน +9

    WHAT A BEAUTY

  • @MathsScienceandHinduism
    @MathsScienceandHinduism 4 หลายเดือนก่อน +2

    Solving integrals can be a hobby

  • @xanterrx9741
    @xanterrx9741 4 หลายเดือนก่อน +1

    Beautiful result , you've made amazing video

  • @jaycash4381
    @jaycash4381 4 หลายเดือนก่อน +1

    Thank you so much man!

  • @MrWael1970
    @MrWael1970 4 หลายเดือนก่อน +2

    This is awesome. Thank you.

  • @vascomanteigas9433
    @vascomanteigas9433 4 หลายเดือนก่อน +1

    The Stietjes constants are evaluated by replacing I*theta by I*n*theta and multiply by n!/(2*pi)

  • @michaelihill3745
    @michaelihill3745 4 หลายเดือนก่อน +1

    Beautiful solution!

    • @maths_505
      @maths_505  4 หลายเดือนก่อน

      @@michaelihill3745 thank you my friend

  • @taterpun6211
    @taterpun6211 4 หลายเดือนก่อน +2

    4:03 I believe there is a slight mistake, you forgot the γ/z pole for k=0 in the sum. When contouring, the non-1/z terms would cancel, leading to I = 2πγ. But your calculations after are equivalent, so the same answer is still achieved

    • @CliffHanger-fg6uy
      @CliffHanger-fg6uy 4 หลายเดือนก่อน +6

      I don’t think he says anything technically incorrect. The only pole encircled by the contour is z = 0, and it is a repeated pole of order 2. That’s what he says.
      The only complaint should be that his presentation is slightly misleading by boxing just the 1/z^2 term without explicitly mentioning the 1/z contribution. Still, I don’t think anything was incorrect.
      The missed opportunity was not just directly observing the residue from the first Laurent series given. By definition, the residue is just the coefficient of the 1/z term. The whole derivative procedure was needless.

    • @asparkdeity8717
      @asparkdeity8717 4 หลายเดือนก่อน

      The definition of a pole of order 2 is that your Laurent expansion has a non-zero z^-2 coefficient as the one with lowest power, so the z^-1 term is not to be worried about. In fact even better if u know the z^-1 coefficient, which is just the definition of residue and u rightly point out is γ straight away

  • @amirb715
    @amirb715 4 หลายเดือนก่อน +7

    you already have the Laurent series, the coefficient of 1/z is the residue. why are you going through all that derivative crap

    • @theelk801
      @theelk801 4 หลายเดือนก่อน

      yeah came here to say the same thing

  • @dannymooren9160
    @dannymooren9160 4 หลายเดือนก่อน +1

    Crazy integral bro

  • @NurBiswas-fc6ty
    @NurBiswas-fc6ty 4 หลายเดือนก่อน +1

    You should start the project of writing a book about integration,it will be a great work.

  • @threepointone415
    @threepointone415 4 หลายเดือนก่อน

    This one's going down on the history books

  • @serdarakalin2209
    @serdarakalin2209 4 หลายเดือนก่อน

    Kamal, z hast a simple Pole at 1 with the residue of Gamma, cauchy integral Theorem says the contour integral ist sum of residues Times 2pi IS the value of the integral , 1+ e**(i * Theta ) ist the circle centered at 1, you can calculate directly from cauchy

    • @nickkrempel5888
      @nickkrempel5888 4 หลายเดือนก่อน +1

      That's not correct. The initial integral is just a standard integral of a function ℝ→ℂ, which is equivalent to two independent integrals ℝ→ℝ (the real and imaginary parts). This is very different from a contour integral (which in parametrized form involves an additional complex multiplication by the derivative of the parametrizing function - incidentally these are also both different from a 2d line integral, which involves an additional real multiplication by the norm of the derivative). ζ has a simple pole at z=1 with residue 1, not γ, and also the residue theorem has a factor of 2πi not 2π.

  • @zyklos229
    @zyklos229 4 หลายเดือนก่อน

    So actually the Laurent Series does the trick. Since if you wouldnt know, you would have to "invent" / calculate this constant(s), which is probably just another sum with some limit, hard to calculate.

  • @maths_505
    @maths_505  4 หลายเดือนก่อน +3

    To get early access to content:
    www.patreon.com/Maths505
    You can follow me on Instagram for write ups that come in handy for my videos:
    instagram.com/maths.505?igshid=MzRlODBiNWFlZA==

  • @lagnugg
    @lagnugg 4 หลายเดือนก่อน

    i have one question: on a unit circle |z| = 1 there are 2 points where Re(1+z) = 1, and these are the points where ζ(1+z) is not defined. why can we just ignore these points when we apply cauchy's residue theorem?

    • @dnsfsn
      @dnsfsn 4 หลายเดือนก่อน +2

      Actually since its 1+z, none of the points of the contour are poles of the zeta function, which only has a pole at z=1.

    • @lagnugg
      @lagnugg 4 หลายเดือนก่อน

      @@dnsfsn oh i get it now. thanks for responding!

  • @danielc.martin
    @danielc.martin 4 หลายเดือนก่อน +2

    you could have ued tau instead of 2pi and would be even more cool xd

  • @yoav613
    @yoav613 4 หลายเดือนก่อน

    Very nice!! Can you please solve the integral ((i)^tanx )(tanx)^i from 0 to pi,the result is pi e^(-pi).thanks💯

  • @montreearmy
    @montreearmy 4 หลายเดือนก่อน

    Gamma subscription k. What does it mean or what is their representing?

  • @paulmenard3232
    @paulmenard3232 4 หลายเดือนก่อน

    How do you even find those integrals in tbe first place?

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +4

      I play around with functions, integrals and series quite alot. There's another write-up on my patreon showcasing such playfulness leading to fascinating results.

  • @marioyard
    @marioyard 4 หลายเดือนก่อน

    thank you for this fantastic integral.Mario more and more ...Ok cool!!!

  • @michallichmira8458
    @michallichmira8458 4 หลายเดือนก่อน

    What is yours scientific degree you have got skills Man congrats take care

    • @maths_505
      @maths_505  4 หลายเดือนก่อน

      @@michallichmira8458 well in about a year and a half I'll have a masters degree

    • @michallichmira8458
      @michallichmira8458 4 หลายเดือนก่อน

      @@maths_505 congrats

  • @unturnedd
    @unturnedd 4 หลายเดือนก่อน

    damn that one is cool

  • @antoine2571
    @antoine2571 4 หลายเดือนก่อน

    "math people of youtube" lmao

  • @dariuszpanchyrz2784
    @dariuszpanchyrz2784 4 หลายเดือนก่อน

    Amazing... 9nce again

  • @mikeoffthebox
    @mikeoffthebox 4 หลายเดือนก่อน

    Nice way to build your Balrog audience.

    • @maths_505
      @maths_505  4 หลายเดือนก่อน

      Math is inclusive after all

  • @jeremyjedynak
    @jeremyjedynak 4 หลายเดือนก่อน +1

    The result is even more beautiful if you replace 2π by τ.

  • @lextratherese7277
    @lextratherese7277 4 หลายเดือนก่อน +1

    The 25th "one of the most beautiful integral i've solved on this channel" this year 😁

  • @SkorjOlafsen
    @SkorjOlafsen 4 หลายเดือนก่อน +2

    In hindsight, I guess I shouldn't be surprised by the result, given how connected ɣ is to ζ(1).