A beautifully unusual integral calculation

แชร์
ฝัง
  • เผยแพร่เมื่อ 24 ธ.ค. 2024

ความคิดเห็น • 56

  • @CM63_France
    @CM63_France 5 หลายเดือนก่อน +8

    Hi,
    2:41 : this integral is well known to be equal to zeta(2),
    5:29 : quantity squared, 5:55 : fixed ,
    7:32 : ok, I have to proof that as home work :)
    15:57 : yes, verified with Fraction module of Python .
    "ok, cool" : 1:51 , 2:58 , 4:01 , 5:59 , 11:04 , 12:58 , 13:34 , 14:20 ,
    "terribly sorry about that" : 3:37 , 4:22 , 5:44 , 6:15 .
    PS : I realize that your first name is very famous now!

  • @GeraldPreston1
    @GeraldPreston1 5 หลายเดือนก่อน +20

    I'm beautifully unusual, that's what my mum told me

  • @kingzenoiii
    @kingzenoiii 5 หลายเดือนก่อน +9

    those fractional equations triggered my anxiety

  • @xizar0rg
    @xizar0rg 5 หลายเดือนก่อน +8

    Given the frequency of use, you should present proofs of the Leibniz integral rule. (preferably posted not solely posted to instagram.) (Maybe also dominated convergence thm, too.)

  • @EtienneSturm1
    @EtienneSturm1 5 หลายเดือนก่อน +7

    In this case, you don't need to calculate the constant of integration as the result is the difference of 2 values

    • @aravindakannank.s.
      @aravindakannank.s. 5 หลายเดือนก่อน +2

      whatever I read from ur comment feels like illegal but it is correct 😅😂

  • @trelosyiaellinika
    @trelosyiaellinika 5 หลายเดือนก่อน +2

    There certainly are many other approaches to solve this integral, some maybe simpler or more straightforward as some have commented, but I love it when you play with the integral like a cat with the mouse... Not just eat it immediately!😂 It's an exercise that broadens one's vision. I enjoyed it greatly. Thanks a lot! Bahat shukriya!

    • @maths_505
      @maths_505  5 หลายเดือนก่อน +1

      @@trelosyiaellinika thanks mate. The Urdu was on point. Where ya from?

    • @trelosyiaellinika
      @trelosyiaellinika 5 หลายเดือนก่อน

      @@maths_505 Mmm... That's a difficult question 🤣 I am Armenian, born and bred in Lebanon, living in Armenia already for 37 years. I know several languages, including Arabic, Russian, Turkish, Greek, Farsi etc. Unfortunately, Urdu is not one of them. But I have many friends, ex colleagues, from Pakistan, Afghanistan, India etc 😄 So, I can often catch phrases in related languages...

  • @premdeepkhatri1441
    @premdeepkhatri1441 5 หลายเดือนก่อน +2

    Once I start to watch I can not stop understanding completely. Thank You for this Video.

  • @beautyofmath6821
    @beautyofmath6821 5 หลายเดือนก่อน +3

    Not me binging every integral on this channel

  • @aravindakannank.s.
    @aravindakannank.s. 5 หลายเดือนก่อน +2

    today is the day bro u finally proven ur not scared of pesky arithmetic which involves fractions. it is very inspiring 😅😂

  • @MrWael1970
    @MrWael1970 5 หลายเดือนก่อน

    Very smart solution. Thanks.

  • @patricius6378
    @patricius6378 5 หลายเดือนก่อน +3

    Loved this one. Especially the arithmethicc and your inability to write the number 8. Don't worry Kamaal, in 1st grade I was really scared I wouldn't learn how to properly write it, but I eventually got the hang of it :)

  • @slavinojunepri7648
    @slavinojunepri7648 5 หลายเดือนก่อน +1

    Gorgeous parametrization!

  • @xanterrx9741
    @xanterrx9741 5 หลายเดือนก่อน

    I love watching your videos , thanks for effort you put in this videos to create them for us viewers

  • @maxvangulik1988
    @maxvangulik1988 5 หลายเดือนก่อน +4

    it's unnecessary to pick a third input for alpha, because you can just integrate from pi/3 to pi/4. C just cancels anyway.

    • @maths_505
      @maths_505  5 หลายเดือนก่อน +6

      Yes but there is a merit to solving the general problem.

    • @maxvangulik1988
      @maxvangulik1988 5 หลายเดือนก่อน +1

      int[pi/3,pi/4](-pi/2-a)da=(-a•pi/2-a^2/2)[a=pi/3,pi/4]
      =-pi^2/8-pi^2/32+pi^2/6+pi^2/18
      =pi^2/2•(1/3+1/9-1/16-1/4)
      =pi^2/2•(4/9-5/16)
      =pi^2/2•((64-45)/144)
      =19pi^2/288

  • @leroyzack265
    @leroyzack265 5 หลายเดือนก่อน

    The fractions that popped out where quite a hell of calculation.

  • @PyarMatKaro
    @PyarMatKaro 5 หลายเดือนก่อน

    It can also be solved using dilogarithms and taking the logarithm of a complex number. Scary stuff! I prefer Kamaal's method here

  • @abc-nd2xt
    @abc-nd2xt 5 หลายเดือนก่อน

    You can prove zeta(2) = pi^2/6 with this general integral. f(a)=Integral ln(x^2+2ax+1)/x dx from 0 to 1. f'(a)=2*Int 1/(x^2+2ax+1) dx = 2/(sqrt(1-a^2))*(arctan((a+1)/sqrt(1-a^2))-arctan(a/sqrt(1-a^2))). Using arctan(x)+arctan(y)=arctan((x+y)/(1-xy)). f'(a)= 2/sqrt(1-a^2) * arctan(sqrt((1-a)/(1+a)))
    So f(a) = 2 Int arctan(sqrt((1-a)/(1+a)))/sqrt(1-a^2) da + C
    sqrt((1-a)/(1+a))=t, (1-t^2)/(1+t^2)=a, da =(-4t)/(1+t^2)^2 dt, 1/sqrt(1-a^2)= (1+t^2)/(2t)
    f(a)= -4 Int arctan(t)/(1+t^2) dt = -2 Int 2 * arctan(t) * (arctan(t))' dt. Using (f^2)' = 2 * f * f', f=f(x)
    f(a)=-2*arctan(t)^2+C = -2 * (arctan(sqrt((1-a)/(1+a)))^2 + C
    Now f(1) = C = 2 * Int ln(1+x)/x dx from 0 to 1, using series for ln(1+x), f(1)=2*Sum (-1)^(k+1)/(k^2), k 0 to 1, = zeta(2)=C,
    f(-1)= 2 * Int ln(1-x)/x dx = -2*zeta(2)= -2arctan(infinity)^2 + zeta(2), arctan(infinity)=pi/2, solving for zeta(2), -3*zeta(2)=-pi^2/2, zeta(2)=pi^2/6

  • @jejnsndn
    @jejnsndn 5 หลายเดือนก่อน +1

    1:28 why did you put the sin alpha?

    • @premdeepkhatri1441
      @premdeepkhatri1441 5 หลายเดือนก่อน

      This adding another variable is called " Feynman Method "

    • @jejnsndn
      @jejnsndn 5 หลายเดือนก่อน

      ​@@premdeepkhatri1441
      Why putting sin alpha not alpha?

    • @trelosyiaellinika
      @trelosyiaellinika 5 หลายเดือนก่อน +1

      That's the beauty of the trick. It suits well with the x√2 & x√3 for values of sin(α) when α is π/4 & π/3... It needs an eye to see it and a little bit of imagination... I certainly enjoyed this integral although it is relatively simple thanks to Feynman!

    • @sandyjr5225
      @sandyjr5225 5 หลายเดือนก่อน

      @@jejnsndn in order to endure lesser difficulty while solving the problem.

  • @Calcprof
    @Calcprof 5 หลายเดือนก่อน

    Mathematica (assuming alpha is between 0 and pi/2) computes the integral I(alpha) in terms of two polylog sub 2's: -PolyLog[2,-I Cos[\[Alpha]]+Sin[\[Alpha]]]-PolyLog[2,I Cos[\[Alpha]]+Sin[\[Alpha]]]. It gets your answer for pi/3 and pi/4

    • @premdeepkhatri1441
      @premdeepkhatri1441 5 หลายเดือนก่อน

      Yes this is the good method to make quick answer

  • @TheMartinbowes
    @TheMartinbowes 5 หลายเดือนก่อน

    Way Cool! I've been working on my 8s as well recently moving to the two stacked balls approach. So stick to your balls and work on your 4s!

  • @worldnotworld
    @worldnotworld 5 หลายเดือนก่อน

    When I see fun/fascinating problems/solutions like this, I always wonder, do such cases ever "arise" in physics or any other quantifiable domain of human experience? This integral is so _cool..._ Does it "correspond" to anything we might run across? That "root 2" vs. "root 3" thing going on -- that must correspond to some physical or metaphysical struggle somewhere, no?!

  • @Samanthipamuduni-l6k
    @Samanthipamuduni-l6k 4 หลายเดือนก่อน

    can someone explain how to choose which parameter we use to make feyman's technique work?
    eg;- how to decide that we should use sin(alpha) as the parameter in 1:12 , he could,ve used something else.
    thank you!

  • @lyyplayscube
    @lyyplayscube 5 หลายเดือนก่อน

    Since the result is the difference of two integrals, the C cancel out and you didn’t need to find out the C (easier evaluation is always a W)

  • @zunaidparker
    @zunaidparker 5 หลายเดือนก่อน +1

    QQ: how is using 2sin(alpha) better than just alpha in the Feynman trick? I don't see where it specifically made the problem any easier. You still end up with arctan integrals do I think you just get to the answer anyway no? Am I missing something in the middle of the derivation?

    • @maths_505
      @maths_505  5 หลายเดือนก่อน +3

      Nah I just wanted to try something different cuz of weird values of the parameter. I've never demonstrated something like this in previous videos so I wanted to do so here. More detail in a couple upcoming videos.

  • @sozeran
    @sozeran 5 หลายเดือนก่อน

    Love your videos 😊

    • @maths_505
      @maths_505  5 หลายเดือนก่อน

      Thanks

  • @yoav613
    @yoav613 5 หลายเดือนก่อน

    Nice!! 15:31💥💥💥💥😂

  • @orionspur
    @orionspur 5 หลายเดือนก่อน +3

    28🌜

  • @jinkela7295
    @jinkela7295 5 หลายเดือนก่อน

    05:29 It should be (x-sin(α))^2

  • @vitorbordini5246
    @vitorbordini5246 5 หลายเดือนก่อน

    Actually you didn't need to calculate the initial condition of I(a),because you wanted a difference

  • @theblainefarm3310
    @theblainefarm3310 5 หลายเดือนก่อน

    This is solvable using Feynman’s technique by replacing sqrt(2) with a second variable (I usually use “t”). This is probably not the best method though due to the extremely nasty integrals that come from it.

  • @vancedforU
    @vancedforU 5 หลายเดือนก่อน +1

    I believe that you don’t have to calculate the constant, since you’re taking a difference

    • @maths_505
      @maths_505  5 หลายเดือนก่อน

      @@vancedforU I didn't want to skip it as it solves the more general problem of not having a difference of logs.

    • @lakshay3745
      @lakshay3745 5 หลายเดือนก่อน

      Also if you have the chance to invoke the Basel problem why would any mortal avoid it🥰

  • @tyyt-dp2rf
    @tyyt-dp2rf 5 หลายเดือนก่อน

    Today I realized I'm a nerd, I laugh with some guy solving integrals, who's strugling to write numer 8. And i have absolutly no problem with that.

  • @jkid1134
    @jkid1134 5 หลายเดือนก่อน

    BABE WAKE UP SNOWMAN 8 ARC IS OVER

  • @jejnsndn
    @jejnsndn 5 หลายเดือนก่อน

    Share in the community the desire to post geomtry videos

  • @zavionw.8052
    @zavionw.8052 5 หลายเดือนก่อน

    19π²/28🌜

  • @GearsScrewlose
    @GearsScrewlose 5 หลายเดือนก่อน +1

    For my thesis, somehow 1 + 1 = 3. Sigh

  • @jinkela7295
    @jinkela7295 5 หลายเดือนก่อน

    15:30 Pacman

    • @sandyjr5225
      @sandyjr5225 5 หลายเดือนก่อน

      Actually that's close to how we write 5 in Bengali, on eof the many languages spoken in India. It's also the national language of Bangladesh.

  • @unturnedd
    @unturnedd 5 หลายเดือนก่อน

    almost half of the video is just the simple algebra lol

    • @maths_505
      @maths_505  5 หลายเดือนก่อน

      It was the biggest struggle I've faced so far

  • @Bruno-j6x
    @Bruno-j6x 5 หลายเดือนก่อน

    Love you

  • @SatyanarayanaMudunuri
    @SatyanarayanaMudunuri 4 หลายเดือนก่อน

    Will you stop saying "Ok, cool" repeatedly. The solution, as usual, is unnecessarily complex