Double Integrals in Polar Coordinates - Example 1

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ม.ค. 2025

ความคิดเห็น • 18

  • @C00kieSandwiches
    @C00kieSandwiches 13 ปีที่แล้ว +1

    my teacher sucks SO much at doing these. couldn't figure them out from my book either, thank you so much! now i know how to study these for my exam. Love how you showed the problem, a real life saver!!!

  • @mtopangaprimo2556
    @mtopangaprimo2556 2 ปีที่แล้ว +1

    I failed my last semester calc 2. Never understood what my Prof was talking about. She made everything seems like rocket science.Its only taken 6min to understand this polar concept. So thank you .definitely getting an A this time.

  • @ariellalee4749
    @ariellalee4749 10 ปีที่แล้ว +6

    Your Videos are always so clear!! Thank you for all the effort you put into them. You are an amazing person, and I hope I can learn to explain as well as you someday.

  • @judyk6266
    @judyk6266 9 ปีที่แล้ว +1

    It's 3 am and i was about to give up until i watched this video !!! GOD BLESS YOU !! Thanks a lot 💙💙💙💙💙

  • @eshaghazali2954
    @eshaghazali2954 4 ปีที่แล้ว

    I was so stressed out last week because of this chapter. THANKYOU THANKYOU THANKYOU

  • @noahmutunga1708
    @noahmutunga1708 3 ปีที่แล้ว

    Thank you sir,
    Your explanations are very clear and concise 👍🏾

  • @zacheryblauser6892
    @zacheryblauser6892 12 ปีที่แล้ว

    you are such a life saver. i wanna buy you dinner

  • @SuperStar-ql5cs
    @SuperStar-ql5cs 5 ปีที่แล้ว

    Why did you take the limits of θ to be from 0 and π/2 instead of 0 and π ?

  • @mtopangaprimo2556
    @mtopangaprimo2556 2 ปีที่แล้ว

    Danke!

    • @Mathispower4u
      @Mathispower4u  2 ปีที่แล้ว +1

      Hi! I apologize for the late reply. Thank you so much for the Super Thanks. Your support to greatly appreciated. I just found out how to filter comments to find Super Thanks. Thank you again!

  • @darcash1738
    @darcash1738 หลายเดือนก่อน

    I see, so the sqrt(9-x^2) makes it the semicircle in the upper half, and then the x: [0, 3] makes it in the first quadrant, restricting it to 0, pi/2.

  • @nwazishwallana7699
    @nwazishwallana7699 6 ปีที่แล้ว

    Thanks 👍

  • @DanhTheMan19
    @DanhTheMan19 12 ปีที่แล้ว

    I LVOE YOU!!!

  • @NeverLieToYa
    @NeverLieToYa 11 ปีที่แล้ว

    ohhh i luv u now XD

  • @SuperStar-ql5cs
    @SuperStar-ql5cs 5 ปีที่แล้ว

    The limits of the argument to be between 0 and π/2 is valid only for a quadrant, not for a semicircle. Your explanations are aweful. Get your basics right.

    • @dawidmohiuddin3242
      @dawidmohiuddin3242 5 ปีที่แล้ว

      Super Star damn dude looks like the celebrity is losing his head again.....

    • @dawidmohiuddin3242
      @dawidmohiuddin3242 4 ปีที่แล้ว

      Super Star ok man, firstly I wasn’t voicing my support for the general message I don’t understand things. You wrote in your bio that ur a secret celebrity, I was having a laugh at that. And secondly your lack of fluent English speaking skills made it extremely difficult for me to understand what u we’re getting at in the second part of your comment. So maybe you should start acting more like the so called “intelligent people”

    • @edwardkane4267
      @edwardkane4267 4 ปีที่แล้ว

      The second integral bounds the y region from 0