Histogram of Oriented Gradients (HOG) | By Dr. Ry @Stemplicity

แชร์
ฝัง
  • เผยแพร่เมื่อ 5 ก.พ. 2025

ความคิดเห็น • 41

  • @prasob1
    @prasob1 4 ปีที่แล้ว +12

    very effective 12:47 minutes... thank you so much

  • @paulawich-glasen8961
    @paulawich-glasen8961 2 ปีที่แล้ว +9

    Such a good video! Thank you. I can feel your passion through my latop. Please keep up the good work!

  • @kameelamareen
    @kameelamareen 4 ปีที่แล้ว +4

    Man your passion just made me excited loving this series

  • @konm
    @konm 3 ปีที่แล้ว +3

    Thanks for the video! Straight to the point.
    Just to add-up, the histograms that we extract per cell in the block should be concatenated and form the final feature vector that describe the block. Then we shift the block (window) by a stride and repeat. For example. 64px x 64px block with 8px x 8px cell and a stride of 8px.
    Typically, we feed the HOG feature vector to a classifier (SVM, MLP, etc.) and train it on object/non-object HOG features (The more negative examples we feed, the more robust the classifier will be and therefore we can reduce false detections/false positives).
    Because we are going to see multiple detections (because of the overlapping scrolling window) of the same object in the image, we use non-maxima suppression to keep only the detection with the highest probability.
    Lastly, to detect various sizes of the same object in an image, and since the scrolling window/block has a fixed size, we use pyramid algorithm, that essentially resize the image every time (and the object of course) before applying the scrolling window again.

  • @tahirak.7565
    @tahirak.7565 2 ปีที่แล้ว +1

    emitting so much positive energy : )

  • @chaudhryshafaatofficial2298
    @chaudhryshafaatofficial2298 2 ปีที่แล้ว +1

    Thanks for this video that are to the point and straight to the point

  • @mithunchandrasaha403
    @mithunchandrasaha403 2 ปีที่แล้ว +1

    Nice Explanation,Sir.Needs More

  • @anniezhang9484
    @anniezhang9484 2 ปีที่แล้ว +1

    Like this instructor!

  • @kemaldursun8192
    @kemaldursun8192 8 หลายเดือนก่อน +1

    thank u so much

  • @suns1953
    @suns1953 2 ปีที่แล้ว +1

    thank you

  • @srihurry
    @srihurry 4 ปีที่แล้ว +4

    U look like Leonard from big bang theory
    By the way nice explanation

  • @gautamgupte9309
    @gautamgupte9309 8 หลายเดือนก่อน +1

    You look cool and your content is impressive

  • @nigarsultana1739
    @nigarsultana1739 9 หลายเดือนก่อน +1

    Thank you sir!!

  • @omarabdullah2776
    @omarabdullah2776 3 ปีที่แล้ว

    just found this and the best explanation out there.!!

  • @anthonyvenable7867
    @anthonyvenable7867 3 ปีที่แล้ว +3

    This was a great video your very inspirational, now I know how to apply the stuff I'm learning in linear algebra.

  • @charansai2057
    @charansai2057 2 ปีที่แล้ว +1

    very good explanation sir

  • @gagankarthik6656
    @gagankarthik6656 4 ปีที่แล้ว +1

    thanks a lot for the simplified yet effective explanation.

  • @kin_1997
    @kin_1997 2 ปีที่แล้ว +1

    nice explanation !

  • @sahersohail7556
    @sahersohail7556 3 ปีที่แล้ว +1

    Thank you so much for clearing my concepts

  • @AbhishekSharma-nl6xx
    @AbhishekSharma-nl6xx 2 ปีที่แล้ว

    Very informative and nice explanation sir. Thank you very much

  • @gregorismalekos6985
    @gregorismalekos6985 3 ปีที่แล้ว +1

    Thank you for making this video! Very clear and helpful overview of this operator :)

  • @1b3d96
    @1b3d96 4 ปีที่แล้ว +1

    Thank you so much for this video, exquisitely explained bravo!

  • @hussainaaliakbar5606
    @hussainaaliakbar5606 4 ปีที่แล้ว +1

    Excellent explanation and great energyyy.

  • @clapperfool
    @clapperfool 4 ปีที่แล้ว

    great video! very good explanation, thank you!

  • @aminebenkhouya7295
    @aminebenkhouya7295 4 ปีที่แล้ว

    amazing content

  • @4MyStudents
    @4MyStudents 3 ปีที่แล้ว

    thats the beautiiiiii of it

  • @ЗамзагулТемирханова
    @ЗамзагулТемирханова 3 ปีที่แล้ว

    Character In the video It's great, I like it a lot $$

  • @reemanjumaaali9784
    @reemanjumaaali9784 4 ปีที่แล้ว

    Very good

  • @minatosunil4132
    @minatosunil4132 4 ปีที่แล้ว

    Hey Leonard!!
    From TBBT

  • @tanyaahuja8923
    @tanyaahuja8923 2 ปีที่แล้ว

    Sir, can you suggest a resource where the python implementation is given? Thanks!

  • @afrahfarah4799
    @afrahfarah4799 4 ปีที่แล้ว

    Thanks for the nice explanation Dr. Ahmed. I was wondering if you can suggest any scientific paper or book maybe for further read.

  • @khaleddiab89
    @khaleddiab89 9 หลายเดือนก่อน

    why he subtract 100 -50 and not 50-100 but in the horizontal he goes for 120-70 so one time he (initial point - terminal point) and other horizontal is ( terminal point - initial point)

  • @Crifft
    @Crifft 4 ปีที่แล้ว +2

    Sorry! I can't understand how did you get a dotted image 10:02 from a gradiant image. please can someone explain to me? :(

    • @paguerchanel
      @paguerchanel 4 ปีที่แล้ว +1

      Those are not actually dots. Each "dot" is an arrow representing the gradient vector. That vector has a direction and magnitude. You actually won't get that image, is for display purposes only so we can get the idea.

  • @sumeiaelkazza8272
    @sumeiaelkazza8272 3 ปีที่แล้ว

    Hi Prof thank you for the video, excellent explanation, how can I contact you ?

  • @reemanjumaaabdali8681
    @reemanjumaaabdali8681 3 ปีที่แล้ว +1

    good lecture
    can you help me in histogram of depth oriented gradient HOD

  • @gangster4896
    @gangster4896 2 ปีที่แล้ว

    Where is the next exercise? :/

  • @johnspivack
    @johnspivack ปีที่แล้ว

    Thanks for trying but this is too confusing. Not because of the difficulty of the material, but because of missing pieces in the explanation. You isolate a group of 8x8 pixels, compute gradients and angles and make a histogram of them for that 8x8 cell. But then what? Do you do likewise for the next group of 8x8 pixels? Unclear.
    Had to downvote, sorry.

  • @duongla3840
    @duongla3840 3 ปีที่แล้ว +1

    Character In the video It's great, I like it a lot $$