LangChain Agents: Simply Explained!

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 พ.ย. 2024

ความคิดเห็น • 27

  • @ALEJANDV1
    @ALEJANDV1 ปีที่แล้ว +3

    Thanks a lot, Rabbitmetrics! The video and the demo fulfill well their purpose of explaining LangCham Agents in a simple way!

  • @badrinathsvn8634
    @badrinathsvn8634 ปีที่แล้ว +2

    Dear Tutor, well explained the concept clearly. Thank you. Could you please create a play list with proper ordering of videos, so that we can learn Langchain step-by-step?

  • @jayhu6075
    @jayhu6075 ปีที่แล้ว

    What a inspiring Agent topic for me as a beginner. Maybe a question can you make a tutor with more then 1 agent that communicate with each other.
    Many thanks.

  • @TheFutureSKOOL
    @TheFutureSKOOL 7 หลายเดือนก่อน +1

    Wow, this video provides a fascinating insight into Langchain agents and their capabilities! 🤖 I'm excited to learn more about how agents work under the hood of Link Chain and the endless possibilities they offer for businesses investing in technology, data, and analytics. Looking forward to diving deeper into building custom agents and unlocking their potential! 🚀🔍 #LangtuneAgents #AI #Innovation

  • @MaiaraAraujo-h8n
    @MaiaraAraujo-h8n หลายเดือนก่อน

    Question: Due to the looping in Langchain's Agent, is there an excessive consumption of tokens?

  • @saikrishna-yk2lq
    @saikrishna-yk2lq ปีที่แล้ว

    An informative video. Is there any way to summarise transcripts using a custom method via agents?

  • @planplay5921
    @planplay5921 9 หลายเดือนก่อน

    Thank you for your video, I want to know if langgraph can replace crewai

  • @kevon217
    @kevon217 ปีที่แล้ว

    Great, succinct and useful demo. Appreciate it!

  • @gouthamansaravanan7692
    @gouthamansaravanan7692 18 วันที่ผ่านมา

    Thats super neat !!

  • @aliissa4040
    @aliissa4040 ปีที่แล้ว

    Hello , Is the performance and speed of agents superior to that of chains?

  • @maharun
    @maharun หลายเดือนก่อน

    so agents are nothing but a function?
    (feel free to correct me if I'm wrong)

  • @rishabsingh7265
    @rishabsingh7265 2 หลายเดือนก่อน

    Great Video, please improve the audio and soundtrack choice.

  • @khushpatel6296
    @khushpatel6296 ปีที่แล้ว

    Hello Rabbit Metrics, I am asking here as this is your latest video, I have seen your videos regarding Langchain, I am curious how to optimize inference while using LLMs in Langchain using TensorRT or Onnx Runtime... As in Industries, It's very obvious, to save the time as well as computation cost... In TensorRT while using open source models, we have techniques like quantization and a few more more for that... So In Langchain is there any way to do this?

  • @real-ethan
    @real-ethan ปีที่แล้ว +1

    Great tutorial, I am wondering how can we pass the Shopify access token dynamically to tools if we are building a saas?

    • @keanu81
      @keanu81 ปีที่แล้ว

      You might provide a Configuration Service that serves user/customer-specific configuration data to your provider services. Or provide the tokens in a (secured) user directory with custom attributes.

  • @yeahliu5293
    @yeahliu5293 9 หลายเดือนก่อน

    to be frankly,there is no different from crud hard code😂i think we should dig more unique Scenario in business,or langchain is a nice vase

  • @seannam1218
    @seannam1218 ปีที่แล้ว +1

    Awesome tutorial! How did the agent know to pass the keyword "Customer" to the get_shopify_insight function without you explicitly telling it?

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      Thanks for watching! The agent infers what it needs to pass from the signature of the function get_shopify_insight

    • @seannam1218
      @seannam1218 ปีที่แล้ว +1

      oh I think I get it. The "->" in python function definition denotes adding annotations for the function. The shopify_objects are defined in this annotation in string format, and I guess this info is fed to the LLM as a prompt. Is that about right? Extremely cool!

    • @FernandoJimenez-cd1ui
      @FernandoJimenez-cd1ui ปีที่แล้ว +1

      @@seannam1218 the text you see immediately after the function declaration with the 3 " is a docstring, and you can access through the property ".__doc__" i guess in the langchain source code, it accesses that description this way. yourFunction.__doc__

  • @DeborahJones-b9x
    @DeborahJones-b9x 2 หลายเดือนก่อน

    937 Hartmann Parkways

  • @LostInTheRush
    @LostInTheRush 24 วันที่ผ่านมา

    Er du tilfældigvis Dansker? 😅

  • @checkwhyke1837
    @checkwhyke1837 6 หลายเดือนก่อน

    best

  • @j0hnc0nn0r-sec
    @j0hnc0nn0r-sec 4 หลายเดือนก่อน

    That noise to show the type in the animation kills my ears

  • @rolandheinze7182
    @rolandheinze7182 ปีที่แล้ว +1

    this function is too simple... how about you build pandas_dataframe_agent from scratch using this approach?

  • @snackirl
    @snackirl ปีที่แล้ว

    im early