LangChain Explained in 13 Minutes | QuickStart Tutorial for Beginners

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 พ.ย. 2024

ความคิดเห็น • 347

  • @imtanuki4106
    @imtanuki4106 ปีที่แล้ว +179

    90% (or more) of tech tutorials start with code, without providing a conceptual overview, as you have done. This video is phenomenal...

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว +5

      Appreciate it! 🙏 Thanks for watching

    • @ThangTran-hi3es
      @ThangTran-hi3es 5 หลายเดือนก่อน +1

      Totally agree with this. I love the way this guy teaching the conceptual

    • @PatchworxStudios
      @PatchworxStudios 4 วันที่ผ่านมา

      I disagree. I almost never find good code examples instead only concepts for dummys.

  • @adamgkruger
    @adamgkruger ปีที่แล้ว +256

    I've noticed a significant lack of comprehensive resources that cover LangChain thoroughly. Your work on the subject is highly valued. Thank you

    • @artic4873
      @artic4873 ปีที่แล้ว +1

      Yes, there's not enough books on it. The documentation is sparse

    • @andrewflewelling4294
      @andrewflewelling4294 9 หลายเดือนก่อน

      Agreed. This was the perfect introduction, for me at this time, to Lang chain.

  • @HarshGupta-sf4rj
    @HarshGupta-sf4rj 8 หลายเดือนก่อน +5

    I never comment on any video but your flawless explanation made me, Thank you for such a masterpiece.

    • @rabbitmetrics
      @rabbitmetrics  7 หลายเดือนก่อน

      Appreciate the kind words! 🙏 Thanks for watching

  • @zerorusher
    @zerorusher ปีที่แล้ว +9

    This is the best 101 video I found on the subject. Most of the other videos assume you're already somewhat familiar with the tools or aren't that beginner friendly.

  • @GerryRCS
    @GerryRCS 2 หลายเดือนก่อน

    We need more videos like this, comprehensive for the general public and for newbies like me. Thank you!

  • @guitarcrax127
    @guitarcrax127 ปีที่แล้ว +5

    Excellent intro, especially for an experienced programmer to start using after a single watch. Learned a lot in a short time with it. Thanks for making.

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      You're welcome! Thanks for watching

  • @sitedev
    @sitedev ปีที่แล้ว +66

    Thank you. I have watched a lot of videos that attempt to explain LLM's and LangChain as successfully as you have here but fail to do it as succinctly as you have. I was looking for a video that I can share with my clients that explains what LLM's and LangChain are without being too dumbed down or being too 'over their heads' and this video is perfect for that! So, again - thank you.

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว +9

      Glad it was helpful! I really appreciate the comment, thank you very much 🙏

  • @manrajsingh8617
    @manrajsingh8617 12 วันที่ผ่านมา +1

    Best video I have ever seen on explaining Langchain soo far 💯

  • @4.0.4
    @4.0.4 ปีที่แล้ว +22

    The coolest thing about enhancing LLMs like this is that locally-runnable models will be very interesting (no huge API call costs) and smarter than by default.

    • @ignfishiv
      @ignfishiv ปีที่แล้ว +4

      I would love local LLMs! Though I doubt that one advanced as GTP-3.5/4 will be able to be run locally for a few years because of the required computational power. I still look forward to the day that it becomes a thing though!

    • @Ltsoftware3139
      @Ltsoftware3139 ปีที่แล้ว +9

      The costs are not the advantage. Hosting things on your own hardware is usually more expensive, especially if you need multiple models(embedding model, LLM, maybe a text to speech). The advantage I see is that you could use custom models trained on your data

    • @oryxchannel
      @oryxchannel ปีที่แล้ว +1

      Enter neuromorphics: th-cam.com/video/EXaMQejsMZ8/w-d-xo.html

  • @jayhu6075
    @jayhu6075 ปีที่แล้ว +12

    One of the best QuickStart streaming that I've seen. A clearly explanation in combination with images. Many thanks.

  • @bingolio
    @bingolio ปีที่แล้ว +2

    EXCELLENT OVERVIEW: Pls note Pinecone as of 1 week is NOT allowing new, free accounts to do any operations! PLS CONSIDER DOING SIMILAR VID FOSS end to end, There is a lot of interest. THANK YOU

  • @danquixote6072
    @danquixote6072 ปีที่แล้ว +60

    Having read through the LangChain's conceptual documentation, I must say this video is a great accompaniment. Very clear and well presented and for a non coder like myself, easy to understand. (I'd pay for a LangChain manual for 5 year olds!) . Subscribed.

  • @anandakumar31
    @anandakumar31 9 หลายเดือนก่อน +1

    Excellent video for beginners who want to start on Langchain. Well explained.

    • @rabbitmetrics
      @rabbitmetrics  9 หลายเดือนก่อน

      Thanks! Glad it was useful

  • @postnetworkacademy
    @postnetworkacademy 7 วันที่ผ่านมา

    "Great video! This explanation of LangChain's core concepts is super helpful for beginners looking to build LLM applications. Thanks for sharing the code link as well-makes it easy to follow along and experiment!"

  • @GeoAIGREL
    @GeoAIGREL 4 หลายเดือนก่อน

    One of the best 101 video on LangChain out there, Kudos to you!

  • @repairstudio4940
    @repairstudio4940 ปีที่แล้ว

    This is a absolutely wonderfuk video on LangChain and its clear and concise. Coukd you do a tutorial for beginners??? 🙏🏼

  • @garratygarret8559
    @garratygarret8559 ปีที่แล้ว +3

    Thank you for the video. I think it gives a really good introduction to the topic without much distraction. Absolutely pleasant to follow even for a non-native speaker.

  • @maya-akim
    @maya-akim ปีที่แล้ว +15

    This was an awesome and very straightforward video. I believe that it's the most useful video about LangChain that exists I've seen so far. Even people that don't know much about programming can follow. Thanks so much!

  • @steve_wk
    @steve_wk ปีที่แล้ว +20

    I've been watching a lot of AI videos, this is definitely one the best - well-organized and very clear

  • @mnava4290
    @mnava4290 2 หลายเดือนก่อน

    Excellent coding examples. Please do more of these.
    Please do a tutorial on how to summarise comments received on a TH-cam video.

  • @johnshaff
    @johnshaff ปีที่แล้ว +6

    I inspected Langchain code as soon as it was released, ran some tests and never used it since. Im surprised so many consider its limitations acceptable. Using embedding similarity as a query filter is like trying to answer a prompt by comparing every chunk of text to your prompt. It makes absolutely no sense because often times an answer looks nothing like a question, and/or the data needed to answer a question looks nothing like the question.
    The purpose of the embedding layer in a transformer neural network is to prepare the prompt tensor for further processing through the remaining model layers. It’s like bringing your prompt to the starting line of a long process to be answered, but instead of bringing just the prompt to the starting line, langchain brings the entire text your asking the question of to the starting line with your question and asking them to look at each other and be like “hey, whoever looks like me, stand over here with me. Ok now the rest of you go away and I’m going to ask chatgpt to see which of you remaining can help answer me”.
    This is a slight of hand trick, trying to replace everything that happens after the starting line, with chatgpt, but it doesn’t really work for 2 big reasons: (1) chatgpt context is not large enough to transform both the entire text your asking a question of + your prompt, and the same limitation applies to batching (2) your embeddings are incomplete because they were not created by the network, but simply hacking the first layer in a sense

    • @MeatCatCheesyBlaster
      @MeatCatCheesyBlaster ปีที่แล้ว

      Interesting take. I suspect most people don't understand the technology enough to see how it works. Would be helpful if you could make a video explanation

    • @albertocambronero1326
      @albertocambronero1326 ปีที่แล้ว

      Biggest limitation right know that we can’t get over with, is chat GPTs context length, there is no way around that unless the contexts is greatly increase by OpenAI themselves or we could train our gpt4 model on large texts

    • @langmod
      @langmod ปีที่แล้ว +3

      @@albertocambronero1326 I agree. It would cool if there was a sort of "short term memory model" that could hold personal data. I don't see expanding context length as a parsimonious solution. Model queries produce the best results when they are sort and poignant. Any time you need to bring a ton of context to the prompt it reduces the relative weight of the primary question. Imagine a patient friend who accepts questions with an unrestricted context length. They have never read the book Great Gadsby (i.e. this would be like your personal data) - so to ask them a question about Jay Gatsby the question must begin by reading them the entire Great Gatsby novel, followed by "thee end... Where did Jay Gatsby go to college?" Then to ask them another Gatsby question it requires reading them the novel, again, and again. It would be awesome if there was a way to side-load a small personalized model that can plug into a LLM for extended capabilities.

    • @albertocambronero1326
      @albertocambronero1326 ปีที่แล้ว +1

      ​@@langmod amazing response, I did not know what was going on under the scenes with the context and did not know model queries produce the best results when they are sort and poignant.
      I believe that if you send the novel it would be stored in the context of the model and then you would be able multiple questions (?) or would the novel be lossing importance (weight) as more and more contexts is added?
      Referring to the comment that started this thread, the complicated bit about training the model on a certain topic, lets say: we train the existing GPT4 model in the book Great Gadsby it would probably know how to answer questions about the book, but it could not analize the whole book to find linguistic trends in the book (like what is the most talked about topic in the book) unless you ALSO feed the model with an article about "the most talked topic in the book".
      I mean I want my GPT4 model to read the book and analize the whole picture of what the book is about without needing extra articles about the book.
      (my use case is to make GPT4 analyze thousands of reviews and answer questions about it, but right now using NLP techniques sounds like a more duable option right now or at least until we have an option to extend GPT4 knowledge)

    • @ugaaga198
      @ugaaga198 ปีที่แล้ว

      You can't say simply "it doesn't really work". It really depends on the use case. There are true limitations and some creativity might be required to leverage it. The context size might me sufficient for smaller use cases or it might be sufficient to break down bigger questions into smaller questions with their own contexts and then summarize etc.

  • @chukypedro818
    @chukypedro818 ปีที่แล้ว +5

    With immediate effect I have subscribe to your awesome channel.
    Explanation to LangChain was clear and concise. I really learnt a lot in just 12 minutes.

  • @ranjithpals
    @ranjithpals ปีที่แล้ว +4

    Your video really helps understand the basics of langchain and provides a good context as well. I'm looking forward to more such videos !

  • @cymaticchaos2425
    @cymaticchaos2425 ปีที่แล้ว +1

    Zero clutter. A Guru (remover of darkness) is one who can create chunks of knowledge in a sequence that is easier for the Shishya (student) to learn with ease and get it to their neocortex without having to decode the vectors, that allows for carrying it to their multiple incarnations. Thank you Guru-ji.

    • @rabbitmetrics
      @rabbitmetrics  11 หลายเดือนก่อน

      I appreciate the comment - thanks for watching!

  • @PhoebePhuu
    @PhoebePhuu 8 หลายเดือนก่อน

    Your explanation is super clear to understand for me as a beginner. I want to know brief steps for the code flow as titles just like
    1.Creating environment to get keys, 2. etc.,. Can anyone answer it?

  • @dudefromsa
    @dudefromsa ปีที่แล้ว +1

    I found this to be very comprehensive and indeed useful.

  • @rakeshmr3329
    @rakeshmr3329 10 หลายเดือนก่อน

    Really fantastic crisp explanation of LLM nothing more nothing less.

  • @musumo1908
    @musumo1908 ปีที่แล้ว +1

    Thanks! This is the best high level langchain video I have watched. Im not a programmer but this overview is invaluable...its clearly explained and demystified the dark arts of langchain 😂😂...question, whats the most straightforward way of converting website data into vectors? Is there some way to scrape urls...looking to create simple q&a agents for small websites...thanks

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      I’m glad it was helpful, I appreciate the comment! Regarding scraping urls, take a look at the latest video I’ve uploaded th-cam.com/video/I-beHln9Gus/w-d-xo.html In that video I’m using LangChain’s integration with Apify to extract content from my own webpage

    • @musumo1908
      @musumo1908 ปีที่แล้ว

      @@rabbitmetrics thanks. Yes took a look. Will see what I can do. Came across Apify in my research yesterday
      ! Will try to run this with llamaindex ….Im teaching myself! There’s not many apify videos around so thanks

  • @saddam_codes
    @saddam_codes ปีที่แล้ว

    This video really explains A-Z about langchain. This is damn good man.

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      Appreciate the comment! Thanks for watching

  • @ALEJANDV1
    @ALEJANDV1 ปีที่แล้ว +11

    Thank you very much, Rabbitmetrics! This tutorial is absolutely a gem for someone looking for a clear and concise overview of the main concepts!

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      Thank you! I'm glad it was helpful

  • @nickfergis1425
    @nickfergis1425 ปีที่แล้ว

    solid instructor. good intro langchain at the right level of depth. For as quick as he rips thru a huge amount of information, he is still pretty easy to follow.

  • @ernikitamalviya
    @ernikitamalviya ปีที่แล้ว

    Thank you so much for covering all the components in just 13 mins. Though, it took an hour to learn and absorb everything :D

  • @zenfoil
    @zenfoil 9 หลายเดือนก่อน

    👍 Your explanation is so structure and clear. I can understand how langchain works now even though I don’t know your python codes at all.

    • @rabbitmetrics
      @rabbitmetrics  9 หลายเดือนก่อน

      Thanks! 🙏 Glad it was helpful

  • @ejclearwater
    @ejclearwater 9 หลายเดือนก่อน

    I have been searching and searching for an explanation of how to do this exact thing!! Yasssssss thank yooouuu! ❤

  • @Janeilliams
    @Janeilliams ปีที่แล้ว

    Wow, this video on lang-chain have all the pieces i have been searching for.
    Thank you so much for taking time and making this awesome video.

  • @prometheususa
    @prometheususa ปีที่แล้ว +15

    I think you have to create the index in pine code explicitly. I did this with the following command 'pinecone.create_index(index_name, dimension=1024, metric="euclidean")' just before calling the search. I wonder if anyone else noticed this...

  • @ratral
    @ratral ปีที่แล้ว +1

    Thank you very much for watching the video, a very well-structured clarification. 👍

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      Much appreciated! Thanks for watching

  • @bwilliams060
    @bwilliams060 ปีที่แล้ว +6

    Excellent unpack! Can you please provide a link to this notebook?

  • @spicer41282
    @spicer41282 ปีที่แล้ว

    Your approach on this Langchain vid garnered you a Subscriber! Thanks!

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      Appreciate the support! Thanks for watching

  • @miguelangelromerogutierrez9626
    @miguelangelromerogutierrez9626 ปีที่แล้ว

    Very good explanation with a simple example to understand how it works! Thanks for this content

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      You're welcome! Thanks for watching

  • @youngsdiscovery8909
    @youngsdiscovery8909 ปีที่แล้ว +1

    super helpful. I think langchain engineer could hold significant value in the current job market

  • @TheAlokgupta83in
    @TheAlokgupta83in ปีที่แล้ว

    This is a cool explanation of how langchain works.

  • @acmatac
    @acmatac 3 หลายเดือนก่อน

    This video explains more better than some udemy courses

  • @ramp2011
    @ramp2011 ปีที่แล้ว

    Excellent video. THank you for sharing. Would love to see a video on Langchain Agents. Thank you

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      You're welcome! Thanks for watching

  • @dozieweon
    @dozieweon ปีที่แล้ว

    This is very insightful and straight to the point.

  • @bharatpanchal8582
    @bharatpanchal8582 11 หลายเดือนก่อน

    Thank you for explaining all the components. Highly appreciate it.

    • @rabbitmetrics
      @rabbitmetrics  10 หลายเดือนก่อน

      You're welcome! Thanks for watching

  • @emptiness116
    @emptiness116 ปีที่แล้ว +1

    Thank you for your contribution through the TH-cam space

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      Appreciate it! Thanks for watching

  • @alaad1009
    @alaad1009 11 หลายเดือนก่อน

    What a beautiful video. You Sir are a great teacher ! Thank You !

  • @axelrein9901
    @axelrein9901 ปีที่แล้ว +1

    This is amazing stuff. Would love to see a deeper dive into it.

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว +2

      Thanks for watching! I'm already working on some deep dive videos

  • @shyama5612
    @shyama5612 11 หลายเดือนก่อน

    Excellent intro. Harrison would approve!

  • @gnanaprakash-ravi
    @gnanaprakash-ravi 6 หลายเดือนก่อน +1

    Hi, this video is one of the best, but now langchain changed its modules and classes, please update us with the new video, for eg: simplesequentialchain is not supporting now!!

  • @Swanidhi
    @Swanidhi ปีที่แล้ว +2

    Great content! Just what someone who just jumped into Gen AI would need to solve diverse use cases. Subscribed!

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      Appreciate it! Thanks for watching

  • @sujoyroy3157
    @sujoyroy3157 ปีที่แล้ว +4

    How is the relevant info (as a vector representation) and question (as a vector representation) combined as a prompt to query the LLM? The example you show is a standard ChatGPT textual prompting scenario. The LLM will spit out what it knows and not what it does not know. So what application will this info be useful for? Also is there any associated paper or benchmark that investigates the performance of extracting "relevant information" using this chunking method or is it implementing some DL based Q/A paper?

  • @hectorprx
    @hectorprx ปีที่แล้ว

    Thanks for the clarity , all the best

  • @MartinShadow-q7v
    @MartinShadow-q7v ปีที่แล้ว

    Your summary of LangChain is very accurate. Do you have a PPT to share?

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      Thanks! Unfortunately, I don’t have a PPT. The video is made with FCPX

  • @alanwunsche-official
    @alanwunsche-official ปีที่แล้ว +1

    Great. Would love to have access to the code as well. Thanks!

  • @limster5
    @limster5 ปีที่แล้ว

    Thank you for this video. Now I can start work on my Langchain. Have subscribed!

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      You're welcome! Thanks for watching

  • @JoshuaDawson-e6x
    @JoshuaDawson-e6x ปีที่แล้ว +1

    Wonder how useful this might be to use with repos? Imagine you could chat with GPT in it knows your entire codebase and could use specific examples in your conversations. Of course there are some security concerns but the trade off might be worth it.

    • @twinlens
      @twinlens ปีที่แล้ว

      I want to explore doing exactly this but with a private LLM instance rather than shipping data to GPT or elsewhere. I've been using gpt-engineer, which is super fun. When it can create a codebase and then iterate on it, more fun.

  • @CinematicHeartstrings
    @CinematicHeartstrings 9 หลายเดือนก่อน

    Thank you very much for the video! Really helpfull to kickstart with LangChain

    • @rabbitmetrics
      @rabbitmetrics  7 หลายเดือนก่อน

      Glad it was helpful!

  • @monkeyy992
    @monkeyy992 ปีที่แล้ว +3

    This is so interesting. We (german insurance company) want to develop our own copilot for employees. But we can’t use the GPT4 API given the fact that our companies data is sensitive and we don’t want them to be public at openai. You have a tip for this issue?

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว +1

      Yes, you would use a local (possibly finetuned) language model instead of GPT4 - planning a video on this

    • @monkeyy992
      @monkeyy992 ปีที่แล้ว

      @@rabbitmetrics would be more than happy about a video concerning this topic. Maybe using GPT4ALL

    • @thebluriam
      @thebluriam ปีที่แล้ว

      If you look at openAI's privacy policy, you'll find that they explicitly state that data provided through the API is not recycled into the training data for OpenAI's systems unless you explicitly enable it, it's off by default. So yes, you can use OpenAI's systems through the API with proprietary information and it wont end up in the training data. A quick search will let you find their official announcements about this.

    • @markschrammel9513
      @markschrammel9513 หลายเดือนก่อน

      @@thebluriam you believe them ??? :D :D: D :D :D

    • @thebluriam
      @thebluriam หลายเดือนก่อน

      @@markschrammel9513 yes, they would be in breach of their own terms of service and liable legally, also, the API has many fewer restrictions and controls vs chatgpt, it's a totally different animal

  • @babakbandpey
    @babakbandpey ปีที่แล้ว +1

    Thanks friend. You answered a lot of questions here and the repo, helped understanding your presentation much better. Please share more. Have a great day.

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว +1

      You're welcome! Thanks for watching

  • @attilavass6935
    @attilavass6935 ปีที่แล้ว

    Great explanation, thank you!
    Would you mind sharing the code in a Colab notebook?

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      You're welcome! I've updated the video description with a link to the notebook

  • @tosinlitics949
    @tosinlitics949 11 หลายเดือนก่อน

    Amazing short video packed with knowledge. Just smashed that subscribe button!

    • @rabbitmetrics
      @rabbitmetrics  11 หลายเดือนก่อน

      Appreciate the support, thanks for watching!

  • @muhammadhaseeb2895
    @muhammadhaseeb2895 ปีที่แล้ว

    Absolutely love the way you explained.

  • @MrAloha
    @MrAloha ปีที่แล้ว +1

    Excellent! I've spent hours looking for this 13 minute tutorial. You fa man! Thanks! 💪😁🌴🤙

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว +1

      Glad you found it! 😊 Thanks for watching

  • @torontoyes
    @torontoyes ปีที่แล้ว +1

    Can you do a video on Autogen and LangChain? Maybe throw in SuperAgent as well.

    • @rabbitmetrics
      @rabbitmetrics  11 หลายเดือนก่อน

      Will be likely covering this in upcoming videos

  • @srikon554
    @srikon554 ปีที่แล้ว

    Detail explanation. Looking for solution to an application, can you please update your about page with a communication channel address. Thank you

  • @KayYesYouTuber
    @KayYesYouTuber ปีที่แล้ว

    Simply fantastic. Thank you very much for explaining it so well.

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      Appreciate the comment! 🙏 Thanks for watching

  • @mohajeramir
    @mohajeramir ปีที่แล้ว

    Really appreciate this. For clarity though, the scheme you presented 1:56 had nothing to do with the rest of the presentation. Correct?

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว +1

      The flowchart visualizes how you can extract information with LLMs from vector storage in LangChain

  • @ayhamkanhoush2912
    @ayhamkanhoush2912 11 หลายเดือนก่อน

    this video was nice and gives a good intro to the topic

  • @ilianos
    @ilianos ปีที่แล้ว

    Great explanatory video! Would you provide a link to this Jypter notebook?

  • @luiscosta9261
    @luiscosta9261 ปีที่แล้ว

    Great explanation! I learned a ton with your video

  • @xGogita
    @xGogita 9 หลายเดือนก่อน

    Brilliant. Structured and clear.

  • @ChrisHarasty
    @ChrisHarasty ปีที่แล้ว

    Excellent overview - Thanks!

    • @rabbitmetrics
      @rabbitmetrics  11 หลายเดือนก่อน

      You're welcome, thanks for watching!

  • @andre-le-bone-aparte
    @andre-le-bone-aparte ปีที่แล้ว +1

    just found your channel. Excellent Content - another sub for you sir!

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว

      Thank you I appreciate the support!

  • @raffdev
    @raffdev ปีที่แล้ว

    Thanks for sharing the knowledge 👍

  • @felipeblin8616
    @felipeblin8616 ปีที่แล้ว

    Great video clear and simple. I wonder is it were possible how can we use this with azure OpenAI

  • @Bragheto
    @Bragheto ปีที่แล้ว +2

    This is gold! Thank you!❤

  • @realJeremyZhang
    @realJeremyZhang ปีที่แล้ว

    Awesome Explanation

  • @leventyuksel93
    @leventyuksel93 ปีที่แล้ว

    Amazing tutorial and explanation, thank you!

  • @mhm7129
    @mhm7129 ปีที่แล้ว

    Excellent work!

  • @vikaspoddar001
    @vikaspoddar001 ปีที่แล้ว

    🎉🎉🎉 Great overview of LangChain, can you do similar video on using LangChain on open_assistant and weiviate vector database

    • @rabbitmetrics
      @rabbitmetrics  ปีที่แล้ว +1

      Thanks! That’s a good idea for a video

  • @lachevre6421
    @lachevre6421 9 หลายเดือนก่อน

    Thank you very much for your video, it's so well explained! One question: is it really necessary to connect tools like Zappier with an API? Thanks to Zappier we can do a lot of things, but if we can already do it natively with the LangChain API, in what context can it be useful?
    Thanks again for your video, I'm very excited about what we can create!

    • @rabbitmetrics
      @rabbitmetrics  9 หลายเดือนก่อน

      It really depends on your use case, you can do a lot with only LangChain/OpenAI. If you are already using Zapier in your flow it might make sense to use Zapier AI Actions.

  • @kailashbalasubramaniyam230
    @kailashbalasubramaniyam230 ปีที่แล้ว

    Great video, what is the first app that you were using to explain the diagram ?

  • @RobbieMraz
    @RobbieMraz 7 หลายเดือนก่อน

    Thank you this is the info I was looking for.

  • @driziiD
    @driziiD ปีที่แล้ว +1

    the hack: we reduce what we have to feed to the LLM by filtering down our data using similarity search on-demand [with embeddings]

  • @stereo_stan
    @stereo_stan ปีที่แล้ว

    This was so helpful! What are your thoughts on connecting langchain and flutterflow?

  • @oscargalvez7
    @oscargalvez7 ปีที่แล้ว

    Great explanation, thanks!

  • @leonardosouzaconradodesant6213
    @leonardosouzaconradodesant6213 11 หลายเดือนก่อน

    Great!!! Fantastic! Awesome! Thank you for sharing!

    • @rabbitmetrics
      @rabbitmetrics  11 หลายเดือนก่อน

      Thanks for watching!

  • @lee1221ee
    @lee1221ee ปีที่แล้ว

    great! I can use this video to teach my friend

  • @jordanchristley1306
    @jordanchristley1306 ปีที่แล้ว

    Highly appreciated video

  • @jimg8296
    @jimg8296 9 หลายเดือนก่อน

    Nice video, can it be updated to not use any external services. Think dealing with sensitive data, don't want to feed it to OpenAI for embeddings, or use online models.

  • @venkatkasthala1554
    @venkatkasthala1554 8 หลายเดือนก่อน

    Thanks a lot. Very good explanation.

  • @roberthuff3122
    @roberthuff3122 ปีที่แล้ว

    Subscribed. Others have clamored for the notebook. I do as well. Thank you.

  • @mwonderlin
    @mwonderlin ปีที่แล้ว +2

    This is excellent - I have a question re the splitting, lets imagine you have email templates that average like 2000 tokens a piece or IG captions with like 500 tokens - should things like this be embedded as one chunk or what is the advantage to splitting up into say 100 token splits?

  • @Glimmer-t44
    @Glimmer-t44 ปีที่แล้ว +113

    OpenAI API keys usage is not free. I had to add a payment method, before the keys started working. Without a valid payment method the keys doesn't return any results.

    • @AbdullahWins
      @AbdullahWins ปีที่แล้ว +15

      It was free at that time.
      early api users got 18$ credit and last time one of my fnd got 5$ credit about a month ago.
      but now it's not free.

    • @jameswei2253
      @jameswei2253 ปีที่แล้ว +7

      yes. and I tried yesterday then realised how quickly charge can add up if no control of using it.

    • @AntonioLop14
      @AntonioLop14 9 หลายเดือนก่อน

      you don't need to pay. You need to earn. Check bittensor and work there

    • @collinspo
      @collinspo 8 หลายเดือนก่อน +1

      Elon 's working on that 😂

    • @bazookaman1353
      @bazookaman1353 8 หลายเดือนก่อน +3

      Use local llms.

  • @noomondai
    @noomondai ปีที่แล้ว +2

    Awesome work thanks a lot!

  • @henrisiepmann3501
    @henrisiepmann3501 ปีที่แล้ว

    Great explanation!

  • @ciaranryan9485
    @ciaranryan9485 ปีที่แล้ว +2

    Hi there, is there a way to combine steps 4 and 5? I assumed you would be using the Agent to answer questions on the autoencoder that we had focused on for the whole video, but then we just used it to do some maths. I think it would be useful if it could answer questions based on the embeddings we have in our index?

  • @jakobstyrupbrodersen926
    @jakobstyrupbrodersen926 ปีที่แล้ว

    Excellent introduction! Thanks a lot :-)