Project 5. Loan Status Prediction using Machine Learning with Python | Machine Learning Project

แชร์
ฝัง
  • เผยแพร่เมื่อ 20 ธ.ค. 2024

ความคิดเห็น • 175

  • @Siddhardhan
    @Siddhardhan  3 ปีที่แล้ว +9

    Hi! You can join this Telegram group for regular updates about my videos: t.me/siddhardhan
    Thank you!

  • @nileshchaudhary1643
    @nileshchaudhary1643 3 ปีที่แล้ว +13

    # This is the solution of exercise given by sir,
    # hope it helps
    # sample input from gender to Property_Area = 1,1,4,1,0,3036,2504.0,158.0,360.0,0.0,1
    Input_data = (1,1,4,1,0,3036,2504.0,158.0,360.0,0.0,1)
    Input_data_as_numpy_array = np.asarray(Input_data)
    # reshaping the data as we are pridicting for one instance
    input_reshaping = Input_data_as_numpy_array.reshape(1,-1)
    x = classifier.predict(input_reshaping)
    print(x)

  • @samikshagodghate910
    @samikshagodghate910 ปีที่แล้ว +4

    i can say this person is one of the besttttttttttttttttttt person everyone needs to get to learn data science!!!!!!!!!!!

  • @piyushtale0001
    @piyushtale0001 3 ปีที่แล้ว +9

    Thankyou Mr. Siddhardhan I would like to tell all that we can use logistic regression for the same as it gives same accuracy like SVM and logistic is faster in computing

  • @taijosephinedanielle2962
    @taijosephinedanielle2962 3 ปีที่แล้ว +4

    God bless you for distinct explanation...
    I had a total understanding of every step
    Thanks brother

  • @shilpa2627
    @shilpa2627 2 ปีที่แล้ว +2

    Your videos are very helpful.

  • @abhishekmishra1313
    @abhishekmishra1313 2 ปีที่แล้ว +4

    can you tell me why logistic regression model wasn't used in this project?😕

  • @sapawar007
    @sapawar007 2 ปีที่แล้ว +4

    Hello Sir the predictive system isn't working since we have the attributes as text,cat as well.Please help with the predictive system for this example

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      Convert the text manually to the encoded values after you get input from the user.
      Like if user specifies male, change the gender variable to 1.

  • @puneetkorjani6648
    @puneetkorjani6648 ปีที่แล้ว +2

    do we need to standardize the data before prediction? pls answer

  • @AmitTiwari-td4zj
    @AmitTiwari-td4zj 2 ปีที่แล้ว +7

    Hi @siddhardhan, nice explanation.,
    But it will be great if you do more EDA part like krish naik do by taking some difficult data set ,like how t to find outlier, how to remove, box plot, null value treatment , most of the project your approach is same , after practicing also from your video ,when we go to solve real world problem we are facing difficulties

  • @kirantodekar3481
    @kirantodekar3481 3 ปีที่แล้ว +2

    on what basis you have selected the SVR model ?
    please specify

  • @vikrantspeaks
    @vikrantspeaks ปีที่แล้ว +2

    I wrote a prediction system:
    #making a predictive system
    #Convert the dataframe to an array
    X_new = X_test.iloc[39].to_numpy()
    #reshape array
    X_predict_reshaped=X_new.reshape(1,-1)
    prediction=classifier.predict(X_predict_reshaped)
    print(prediction)
    if (prediction[0]==0):
    print('Not eligible for loan')
    else:
    print('Eligible for loan')

    #check the actual value
    Y_new = Y_test.to_numpy()
    print(Y_new[39])

    • @ryanranjith672
      @ryanranjith672 8 หลายเดือนก่อน

      Thanks

    • @nuclr932
      @nuclr932 9 วันที่ผ่านมา

      Thanks

  • @HarshitSingh-tg9yv
    @HarshitSingh-tg9yv 2 ปีที่แล้ว +3

    There are 614 data points in this example. Dropping all rows with NaN values leaves only 480 data points. Thus, a significant proportion of data points is dropped. Shouldn't we try another method like filling mean values in numerical columns, etc.?

    • @dondata718
      @dondata718 ปีที่แล้ว

      I tried this and it didn’t change the accuracy score that much

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      You can treat the Credit_History NaN values as third category.
      Use ordinal encoding here. 0 for bad (0.0), 1 for nan, 2 for good (1.0)
      NaN values here indicates that the applicant is applying for the loan for very first time.
      For other features, all of them have like about 5% missing data. So that won't really affect the model as much as you might think.

  • @premalathas623
    @premalathas623 3 ปีที่แล้ว +1

    Clear explanation.. keep up the good work!..

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      thank you so much 😇

  • @shlokkumar6257
    @shlokkumar6257 ปีที่แล้ว +1

    sir, while making model as a input when i am feeding data to predict its having textual data, so i just want to know that do we have to import libraries like Tfidfvectorizer or something?

  • @sahilsvachhani
    @sahilsvachhani 8 หลายเดือนก่อน +1

    Why did we separated labels with data?

    • @UNKNOWN-ST-f3m
      @UNKNOWN-ST-f3m 2 หลายเดือนก่อน

      To train the model correctly, as we want to predict the label & not just feed the label to model...

  • @sumankundu3232
    @sumankundu3232 ปีที่แล้ว +1

    in this project could we use logistic regression ???

  • @mvs69
    @mvs69 3 ปีที่แล้ว

    when replacing dependent values, it's assigned to new variable, 28:45 but before when replacing loan status no assigning,, why ?

  • @chidichukwumezie8438
    @chidichukwumezie8438 3 ปีที่แล้ว +5

    Thank you for the video. Great lesson.
    However, I do have a question.
    Why was feature scaling not done on the dataset considering that some features like ApplicantIncome, CoapplicantIncome, LoanAmount, etc have higher values (weight) than the rest?
    I also know that the performance of the SVM model is affected by feature scaling.

    • @felipemaldonado1057
      @felipemaldonado1057 2 ปีที่แล้ว

      Scaling may make the algorithms works better. The vid contains just the most important or essencial things in order to make the models works. It is an educational vid and scaling is an advance thing but obviously recommended when necessary.

  • @LoneWolf-rj1px
    @LoneWolf-rj1px 2 ปีที่แล้ว +1

    How do we understand this Loan project will work best on SVM and not Logistic Regression?

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว +1

      He just took that as an example. Logistic Regression will work as good!

  • @jawehers
    @jawehers 3 ปีที่แล้ว +1

    Hi Siddhardhan, why didn't we use Logistic Regression here pls ?

  • @ComputerScienceSimplified
    @ComputerScienceSimplified 3 ปีที่แล้ว +1

    Awesome video, keep up the incredible work! :)

  • @samuelpaul5923
    @samuelpaul5923 2 ปีที่แล้ว +3

    I guess you should have used StandardScaler(), coz some of the columns values are 1, 0 and some of columns contains above 3000 or 4000 values. Let me know if I'm wrong..

    • @vanshdoshi3283
      @vanshdoshi3283 ปีที่แล้ว

      same thought... @siddhardhan pls tell its good to use standardscalar here or not?

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      You guys are right! @samuelpaul5923 and @vanshdoshi3283, you can surely try to use the StandardScaler.
      You basically check the spread of every feature and scale the one with pretty high spread.
      Here, as much as I could see, there is not a LOT of spread in the numeric data. Hence, the scaling won't contribute a lot as you may think. Still give it a try and let us know.

    • @sandeepthukral3018
      @sandeepthukral3018 5 หลายเดือนก่อน

      @@rohanshah8129 I tried scaling column that is income but the accuracy decreased

  • @kishanpoojary1761
    @kishanpoojary1761 2 ปีที่แล้ว +1

    Sir I got error that couldn't convert string to float: 'semiurban'
    What is the problem

    • @kishanpoojary1761
      @kishanpoojary1761 2 ปีที่แล้ว

      I followed all the steps in ur vedio sir

  • @ram9208
    @ram9208 2 ปีที่แล้ว +1

    1) why are we not doing feature scaling in this dataset given features are of different measures.
    2) in case we have another column here lets say profession which contains more than 20 different professions, how would we convert that into numerical?
    Thanks for the video though Siddhardhan

    • @sejaljamwal6773
      @sejaljamwal6773 ปีที่แล้ว

      for the second one we'll do one hot encoding i guess

  • @rishipatwa6823
    @rishipatwa6823 6 หลายเดือนก่อน

    predictive system
    input_data=(1,1,4,1,0,3036,2504,158,360,0,1)
    #changing th array to numpy array
    input_data_as_numpy_array=np.asarray(input_data)
    prediction=classifier.predict(input_data_as_numpy_array.reshape(1,-1))
    print(prediction)
    if (prediction[0]==0):
    print('not approved')
    else:
    print('approved')

  • @rosan5657
    @rosan5657 ปีที่แล้ว +3

    Bro if u r from Itahari International College then plz skip this project bcz i have already copied it ;))

  • @syedazharmohiuddin3007
    @syedazharmohiuddin3007 8 หลายเดือนก่อน

    X_new = X_test[0]
    # Reshape X_new into a 2D array
    X_new = X_new.reshape(1, -1)
    prediction = classifier.predict(X_new)
    print(prediction)
    if (prediction[0]==1):
    print('Loan Approved')
    else:
    print('Loan Denied')
    prediction system for Loan Status

  • @ashusingh8280
    @ashusingh8280 ปีที่แล้ว

    Hello
    Why didn't you use another classification algorithm? Can we use any other classification algorithms as well?

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      Surely. Try Logistic Regression for example, it shall work as good as what you have seen here as it is a binary classification problem and dataset is also small.

  • @manjumankoji1448
    @manjumankoji1448 3 ปีที่แล้ว +1

    is it possible to SVM algorithm plot into the graph..

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      hi! go through this documentation

  • @stephenmascarenhas3595
    @stephenmascarenhas3595 3 ปีที่แล้ว +1

    Sir ur teaching is awesome
    But why can we do like this to get accuracy
    classifier.fit(x_train,y_train)
    classifier.score(x_test,y_test)

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      Hi! you can do this as well.

  • @evavashisth9103
    @evavashisth9103 6 หลายเดือนก่อน

    My code is working absolutely fine but I’m unable to understand the reasoning behind the “Train Test split” why exactly are we doing that? And why did we do those four different variables, xtrain test, train, test? Could you please elaborate why we do that?

  • @sandipansarkar9211
    @sandipansarkar9211 2 ปีที่แล้ว +1

    finished watching

  • @LoneWolf-rj1px
    @LoneWolf-rj1px 2 ปีที่แล้ว

    Can we import Label Encoder from Sklearn and do the encoding?
    How can we know what is labeled what by the label encoder?

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      Use the value_counts() to see the unique categories after encoding is done

  • @twilightlifestylepriya
    @twilightlifestylepriya ปีที่แล้ว

    Hi can we use LogisticRegression model for thie same

  • @AmruthaPonnu-j1v
    @AmruthaPonnu-j1v 22 วันที่ผ่านมา

    Predictive system:
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=.2,stratify=y,random_state=2)
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train) # Fit and transform the training data
    X_test_scaled = scaler.transform(X_test)
    classifier = svm.SVC(kernel='linear', class_weight='balanced')
    classifier.fit(X_train_scaled, y_train)
    input_data=(0,0,0,1,0,3510,0,76,360,0,1) # expected prediction 0
    input_data_array=np.asarray(input_data)
    input_data_reshaped=input_data_array.reshape(1,-1)
    input_data_scaled = scaler.transform(input_data_reshaped)
    prediction = classifier.predict(input_data_scaled)
    print(f'predicted value is :{prediction[0]}')
    if prediction[0]==0:
    print('loan rejected')
    else:
    print('loan approved')

    • @nuclr932
      @nuclr932 9 วันที่ผ่านมา

      X is not defined please help

  • @shalinilokeshgowda
    @shalinilokeshgowda ปีที่แล้ว +1

    Hi Siddhardhan, this is great. May i know how to change the code if i need to read a pdf file and excel file and then load into dataset?

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      You can use pd.read_excel(excel_path)
      For pdf, it will be a bit long to explain here.

  • @totosy
    @totosy 9 หลายเดือนก่อน

    can you send the link for the application test data

  • @mc_abah
    @mc_abah 3 ปีที่แล้ว

    Sir pls I need a quick answer. Am having a problem with the prediction system. Am not having an accurate results it's seem the model is not learning from the data. The model is predicting '1' for all input data even when it's supposed to be '0' ie for loan rejected

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      Some issue with your procedure

  • @LoneWolf-rj1px
    @LoneWolf-rj1px 2 ปีที่แล้ว +2

    Thank you for also showing the data visualizations in this ML Project. However, I have 1 question, do we need to do these Visualizations every time while we need to do the ML, or is it just an optional thing just to show the relationship of the data?

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      Data Analysis helps you in preparing a good Data Preprocessing Pipeline.

  • @kuldeepsinghdudi2679
    @kuldeepsinghdudi2679 3 ปีที่แล้ว

    Great work 👏

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      Thank you so much 😇

  • @gauravthorave1136
    @gauravthorave1136 ปีที่แล้ว

    Sir why we use linear regression ,why we don't use logistics regression can you plz tell or guide

  • @_poodsiepie_258
    @_poodsiepie_258 3 ปีที่แล้ว +1

    Hey can you please give an example of input data for predictive system. Any one example.. plz

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      hi! please refer diabetes prediction and other project videos. it's the same procedure.

  • @namithashri
    @namithashri 2 ปีที่แล้ว +1

    Hello sir. This video is very much helpful for me as I'm doing my final project based on the same concept.. But the problem is, my faculty asked me that in the verification process cibil score is checked and why are these required.. can you help me answer that..
    expecting your reply...

    • @PraveenKumar-ob7gd
      @PraveenKumar-ob7gd 2 ปีที่แล้ว

      Hellooo am doing same project help me

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว +1

      credit history has a direct impact on cibil score
      better the credit history better the cibil score
      so the credit history feature shall do that task for you.

    • @namithashri
      @namithashri ปีที่แล้ว +1

      @@rohanshah8129 thank you

  • @amoldusane9851
    @amoldusane9851 2 ปีที่แล้ว

    Sir I faced problem when I fit the data.... there is a value error: could not convert string to float: 'LP001431'
    PLEASE RESOLVE THE QUERY

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      Drop this column of LOAN ID

  • @yallanurunaveenkumar3422
    @yallanurunaveenkumar3422 3 ปีที่แล้ว +1

    Sir please provide how to implement logistic regression for loan approval prediction

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      hi! it's the same procedure. watch my other videos to learn how to implement logistic regression

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      Just change the SVM with LogisticRegression() and it should work just fine.

  • @aazimkhan1753
    @aazimkhan1753 3 ปีที่แล้ว +2

    In input_data , we should not add loan id and loan status right??
    BTW love your video :)

  • @karthikeyatsvr3838
    @karthikeyatsvr3838 2 ปีที่แล้ว

    how do we approach if we were given with traindata and test data separately, instead of the one dataset??

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      Split would not be required in that case and the same Feature Engineering Steps must be applied on the test dataset too before the prediction.

  • @techwithsufi5674
    @techwithsufi5674 3 ปีที่แล้ว +1

    Which software you are using for making the slides ??

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว +1

      I am just using MS PowerPoint.

    • @techwithsufi5674
      @techwithsufi5674 3 ปีที่แล้ว +2

      @@Siddhardhan all right thanks and your English is quite good I also speak English but hesitates a little bit

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว +2

      Thanks for your appreciation 😇 practice more... Eventually you will be good at it. All the best!

    • @techwithsufi5674
      @techwithsufi5674 3 ปีที่แล้ว

      @@Siddhardhan yes sure

  • @amalkuttu8274
    @amalkuttu8274 2 ปีที่แล้ว

    why every feature is selected for building the model..is there a process called feature selection..I am a student doing a mini project in ML. so please sombody answer this.

    • @Siddhardhan
      @Siddhardhan  2 ปีที่แล้ว

      Hi! I wasn't focusing much on data analysis and feature engineering part as this is a machine learning course. Those topics will be taught in the data science course. The idea here is to show the implementation of ML models. But I would advise u to do all the feature engineering part if u r working on an end to end project.

    • @amalkuttu8274
      @amalkuttu8274 2 ปีที่แล้ว

      @@Siddhardhan thanks fot the reply

  • @madhumithan6653
    @madhumithan6653 2 ปีที่แล้ว

    Hi sir, Thanks for the great effort.Can u plz explain which model (linear or logisticregression or svm or random forest )has to be chosen at what criteria for the data,as i m confused to chose which model.

    • @symbiontacademy9232
      @symbiontacademy9232 2 ปีที่แล้ว +1

      It depends on the data, I guess there isn't any hard and fast rule which works everywhere, as this is a classification problem so it rules out linear regression. You will need to use several models and then you will observe which model is performing better than the others. Keep watching other projects, every video will hit a new concept and by the end of the playlist, you will not have any such doubts.

    • @madhumithan6653
      @madhumithan6653 2 ปีที่แล้ว +1

      @@symbiontacademy9232 Thanks for the reply

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      Logistic should be pretty fine to work with as its a small dataset + binary classification.
      If this doesn't work... then you can train multiple classification algorithms and compare which one is best and then fine tune it.

  • @arsavarthiniamu2242
    @arsavarthiniamu2242 3 ปีที่แล้ว

    Y u r using some model can use decision tree random forest any particular reason

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      hi! each model has its pros & cons. refer my video on model selection for more information.

  • @tusharkhan3133
    @tusharkhan3133 3 ปีที่แล้ว

    Brother can you tell me what I have done wrong here? My program always shows that , the person won't receive any kind of loan no matter whichever parameter I feed it.
    input_data = (1,1,1,1,0,4583,1508,128,360,1,0)
    # changing the input_data to numpy array
    input_data_as_numpy_array = np.asarray(input_data)
    # reshape the array as we are predicting for one instance
    input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
    # standardize the input data
    std_data = scaler.transform(input_data_reshaped)
    print(std_data)
    prediction = classifier.predict(std_data)
    print(prediction)
    if (prediction[0] == 0):
    print('The person will receive loan')
    else:
    print('The person will not receive loan')

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      hi! you shouldn't use standard scaler as we have lot of categorical columns in our data. do the code without standardizing the data.

    • @samarapires7631
      @samarapires7631 3 ปีที่แล้ว

      Were u able to get this ? I am a bit confused

    • @emmanuelnyangweso9389
      @emmanuelnyangweso9389 3 ปีที่แล้ว

      In my case, i have not used standard scaler but the code is till having some problems since input_data = (1,1,1,1,0,4583,1508,128,360,1,0) shows person won't receive loan

    • @fahaamshawl9335
      @fahaamshawl9335 2 ปีที่แล้ว

      Did you find any solutions for input data? Having issues with the inputs to predict

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      use sclaer only on numerical features

  • @pavanporika4135
    @pavanporika4135 3 ปีที่แล้ว

    Sir u said I will do videos on interview questions in loan prediction but u didn't started yes sir makeee I have no time

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      hi! I cannot make interview questions specifically for this project. today evening, I'll upload a video on interview questions for Machine Learning. it will be a general topic.

    • @pavanporika4135
      @pavanporika4135 3 ปีที่แล้ว

      @@Siddhardhan k sir can u tell me if interviewer ask me out of logistics regression and support vector machine which is better and you didn't tryed with decision tree...
      And other algorithms??
      How to answer

  • @mysteriovvn
    @mysteriovvn 3 ปีที่แล้ว +2

    Hi, one question: The semi_urban showed high chances of getting loan approved than other two, so was it more appropriate to give it the weightage with value=2 when you replaced the category. Thanks in advance.

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      hi! that's a really good insight. we can do that.

  • @nishitagupta1349
    @nishitagupta1349 2 ปีที่แล้ว

    Sir can you help us with some doubts in making predictive system for loan status prediction using ML ?

  • @funtime12345
    @funtime12345 3 ปีที่แล้ว

    Hello sir, I have the same dataset with more columns and around 30000 rows and need to predict the loan amount where I am creating a Regression model. But the problem is handling the missing values. I am a bit confused about whether to replace it with mean, mode, or median in place of missing values. Sir can you help me with this as stuck with this problem.

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว +1

      hi! watch my video on handling Missing Values

    • @funtime12345
      @funtime12345 3 ปีที่แล้ว +1

      @@Siddhardhan sir I cannot find exact video for it on your playlist. Can you give me the link please.

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      th-cam.com/video/GzZmfe030PU/w-d-xo.html

  • @ruchibhadauria4977
    @ruchibhadauria4977 3 ปีที่แล้ว

    if we encode categorical variables with numbers like 1, 2 wont the model find pattern in it?

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      hi! if we 2 or 3 categories, then it is not a problem. if we have more categories like 6 or more than that, we can use "One Hote Encoding".

  • @sivakumar.s2559
    @sivakumar.s2559 2 ปีที่แล้ว

    Tell how to make the predictive system for this model the last part

    • @sivakumar.s2559
      @sivakumar.s2559 2 ปีที่แล้ว

      Pls post in soon are send any link

  • @aravindvempati6113
    @aravindvempati6113 3 ปีที่แล้ว

    i have a doubt, why feature scaling not done

    • @rohanshah8129
      @rohanshah8129 ปีที่แล้ว

      the spread of data is not huge, hence scaling won't really help our model here. However, if you try it there should not be any issues.

  • @rpml7939
    @rpml7939 3 ปีที่แล้ว

    Hey, when you are converting the Y & N to 1,0 you will get the type error (Cannot compare types 'ndarray(dtype=int64)' and 'str'). To fix this issue you need to change the type of Loan_Status column to string or object.

    • @kumarishikha8490
      @kumarishikha8490 3 ปีที่แล้ว

      Can you please provide the code for it ? How do we change the type?

    • @felipemaldonado1057
      @felipemaldonado1057 2 ปีที่แล้ว +2

      @@kumarishikha8490 you can use this as model. df['column_name'] = df['column_name'].apply(lambda x: '1' if x == 'Y or N up to you' else '0')

    • @kumarishikha8490
      @kumarishikha8490 2 ปีที่แล้ว

      @@felipemaldonado1057 Thanks

  • @snehacookie4138
    @snehacookie4138 3 ปีที่แล้ว

    Bro is dng this project as final project is good or not bro can u pls say

  • @mix_dj5580
    @mix_dj5580 3 ปีที่แล้ว

    Good video

  • @boddunageswari1945
    @boddunageswari1945 ปีที่แล้ว

    Sir please tell us the code for making a predictive system for this case
    😢

  • @movieskuchhatkey3817
    @movieskuchhatkey3817 2 ปีที่แล้ว

    i am not able to make predictive system pls help to create

  • @incomegrowth18
    @incomegrowth18 11 หลายเดือนก่อน

    Sir can you plz share ppt on it

  • @aqsasaif8847
    @aqsasaif8847 3 ปีที่แล้ว +1

    any one here can share the code of the predictive system as well?

    • @saikirana9629
      @saikirana9629 2 ปีที่แล้ว

      Did you get the code? @aquasaif8847

  • @growingfire
    @growingfire 6 หลายเดือนก่อน

    Thanks a lot !

  • @jhonceenaskt
    @jhonceenaskt 2 ปีที่แล้ว

    where is the dataset?

  • @rishabhmohata9268
    @rishabhmohata9268 3 ปีที่แล้ว

    in spite of using replace we could have simply gone for get_dummies ...isnt it ?

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว +1

      yes, you can try it.

    • @rishabhmohata9268
      @rishabhmohata9268 3 ปีที่แล้ว

      @@Siddhardhan I just finished up this project and accuracy certainly dropped to 71.27 to yours 80 ...

  • @piyushsingh6393
    @piyushsingh6393 26 วันที่ผ่านมา

    Drop correct predictive system please

  • @dolutarakesh2849
    @dolutarakesh2849 3 ปีที่แล้ว

    sir can i get ppt you made so i can understand plz sir

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      hi! I am sorry. I cannot share the ppt.

  • @incomegrowth18
    @incomegrowth18 11 หลายเดือนก่อน

    Whu u not fill the missing value

  • @ahmedabid6799
    @ahmedabid6799 3 ปีที่แล้ว

    big thanks

  • @ryanranjith672
    @ryanranjith672 8 หลายเดือนก่อน

    Did anyone found out how to make predictive system?

  • @vishvapatel6876
    @vishvapatel6876 ปีที่แล้ว

    hyyy anyone please help with making predictive system provide the code

  • @ishwarya22
    @ishwarya22 2 ปีที่แล้ว

    Can you please provide PPT of this

  • @shubhamkhandagale1366
    @shubhamkhandagale1366 3 ปีที่แล้ว

    Need help for same project

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      hi! mail to siddhardhselvam2317@gmail.com

  • @pradeeprayapati8667
    @pradeeprayapati8667 2 ปีที่แล้ว

    Sir i want pdf file sir, to learn..

  • @lahuhavmore6803
    @lahuhavmore6803 ปีที่แล้ว

    Why used svm here

  • @rohit-qx8jn
    @rohit-qx8jn 3 ปีที่แล้ว

    is this project complete

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      complete in the sense?

  • @radhikataldar
    @radhikataldar 3 ปีที่แล้ว

    Need your help for such projectd

    • @Siddhardhan
      @Siddhardhan  3 ปีที่แล้ว

      Hi! You can contact me in social medias.

  • @sandipansarkar9211
    @sandipansarkar9211 2 ปีที่แล้ว

    finished coding

  • @premdasani650
    @premdasani650 4 หลายเดือนก่อน

    👍

  • @boddunageswari1945
    @boddunageswari1945 ปีที่แล้ว

    😢😢

  • @abhishekmishra1313
    @abhishekmishra1313 2 ปีที่แล้ว +1

    gender can"t be segregated into 0's and 1's 😂
    what if the person is transgender lol

    • @sahilsvachhani
      @sahilsvachhani 8 หลายเดือนก่อน

      haha
      then assign 2 for transgender