Number 1 and Benford's Law - Numberphile

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 มิ.ย. 2024
  • Why number 1 is the "leading digit" more often than you may expect?
    More links & stuff in full description below ↓↓↓
    See us test the law using Brady's TH-cam viewing figures at: • Brady's Videos and Ben...
    Blog about all this at: bit.ly/benfordslaw
    Brown Paper from this video on ebay: bit.ly/brownpapers
    This video features Steve Mould: www.stevemould.com/ and / moulds
    NUMBERPHILE
    Website: www.numberphile.com/
    Numberphile on Facebook: / numberphile
    Numberphile tweets: / numberphile
    Subscribe: bit.ly/Numberphile_Sub
    Videos by Brady Haran
    Patreon: / numberphile
    Brady's videos subreddit: / bradyharan
    Brady's latest videos across all channels: www.bradyharanblog.com/
    Sign up for (occasional) emails: eepurl.com/YdjL9
    Numberphile T-Shirts: teespring.com/stores/numberphile
    Other merchandise: store.dftba.com/collections/n...
  • วิทยาศาสตร์และเทคโนโลยี

ความคิดเห็น • 2.4K

  • @anrubio5
    @anrubio5 10 ปีที่แล้ว +602

    This is why I think Benford's Law holds:
    I felt like intuitively this should make sense but I couldn't explain why until I drew it out. There is a higher spread between the next instance of the same leading number the higher you go, making it less likely that you will actually have that digit as a leading number.
    So for instance, if you start with 1 the next instance of that leading number is 10. There is a 9-digit spread.
    You start with 2. The next instance of that leading number is 20. There is an 18-digit spread.
    You start with 3. The next instance of that leading number is 30. There is a 27-digit spread. (Or 27 opportunities NOT to hit 3). AND SO ON...
    You start with 9. The next instance of that leading number is 90. There is an 81-digit spread.
    Same for the higher values:
    You start with 1999. The next instance of that leading number is 10,000. There is an 8001-digit spread.
    You start with 8999. The next instance of that leading number is 80,000. There is 71,001-digit spread. You're again, going to be less likely to get something starting with an "8" than something starting with a "1".

    • @StackCanary
      @StackCanary 7 ปีที่แล้ว +44

      Thanks, this is exactly what I needed to get it to click! For some reason I couldn't intuit any of the explanations in either the video or other comments. Pointing out the (general) spacing between instances of numbers with the same initial digit highlights the sequential nature of numbers, which is apparently what I wasn't thinking of. Another way to look at what you've pointed out is that (generally) to get to the next number with the same leading digit, you must multiply by the base. This means that the smallest number will result in the smallest distance between instances. Now I see why it's so obvious to some people. It seems very obvious from this perspective.

    • @patrice1345
      @patrice1345 6 ปีที่แล้ว +3

      is that due to some manipulation of concept? Since a spread from 1 to 10 primarily deal with 1 digit numbers, whereas 2 to 20 include both 1 digit and 2 digit numbers. Also 10 to 100 only include 2 digit spread, where as 90 to 900 deals more with 3 digit numbers. So can we infer that if we limit the distribution to be only 100-999, the Benford law would not be in effect?

    • @bikashagarwal6263
      @bikashagarwal6263 6 ปีที่แล้ว +9

      I guess, the other way to explain this is, that the 1st numeric no is 1 and then 2 and so no... this it self is biased, we tend to start things with 1. Where as if we count backward, the reverse will be true for 9 :) say 9999, 9998,.... the probability of 9 will be highest at 1st and then it will gradually reduce :)

    • @bikashagarwal6263
      @bikashagarwal6263 6 ปีที่แล้ว +11

      Or in other words i should say the probabilty to happen somthing (not expexted / strange) in life, for the 1st time will be higher then to happen the same things for the 9th time :)

    • @Kaczankuku
      @Kaczankuku 5 ปีที่แล้ว +2

      A Ronse Do you think that digit keys of computer keyboards need to repairing due to proportionally usage according to Benford's law?

  • @chack321
    @chack321 3 ปีที่แล้ว +1177

    This video is about to be a lot more popular.

    • @nickniehaus1763
      @nickniehaus1763 3 ปีที่แล้ว +43

      Lol queue the “here before 1 billion views” comment

    • @mccutcheonpe
      @mccutcheonpe 3 ปีที่แล้ว +43

      Yes, yes it is. Some people know.

    • @josephcollier1028
      @josephcollier1028 3 ปีที่แล้ว +29

      That’s what brought me here

    • @matthiaskufner2283
      @matthiaskufner2283 3 ปีที่แล้ว +15

      So true!

    • @Exorine
      @Exorine 3 ปีที่แล้ว +36

      dont get too cocky star fox!
      it wont take too long before papa google and friends start scrubbing the whole internet of any damning arguments...

  • @carlarosso46
    @carlarosso46 3 ปีที่แล้ว +64

    Latif Nasser's docuseries Connected brought me here. I was utterly mindblown.

  • @pbx7257
    @pbx7257 3 ปีที่แล้ว +1930

    Who’s here after the 2020 Presidential Election? 😂😅

    • @veronicasweet4444
      @veronicasweet4444 3 ปีที่แล้ว +55

      Me, trying to figure this out.

    • @WilliamFBogey
      @WilliamFBogey 3 ปีที่แล้ว +102

      These fuckers need to be dealt with

    • @bennypinaula1231
      @bennypinaula1231 3 ปีที่แล้ว +17

      Me.

    • @1234SLUR
      @1234SLUR 3 ปีที่แล้ว +13

      @@WilliamFBogey cope

    • @zanvesta2072
      @zanvesta2072 3 ปีที่แล้ว +75

      @@1234SLUR biden shills on youtube too x)

  • @Andronamus
    @Andronamus 10 ปีที่แล้ว +243

    Don't know if I'm the only one who noticed this, but at 0:20, the "L" in "Law" is actually the number 1. Very cheeky :P

    • @shadow81818
      @shadow81818 9 ปีที่แล้ว +6

      I happened to have paused the video just at that spot to let it load, so I saw that. Very cool!

    • @katakana1
      @katakana1 5 ปีที่แล้ว +4

      I 1ike it that way.

    • @Tubecraft1
      @Tubecraft1 3 ปีที่แล้ว

      Very sharp of you to see that

  • @TheWhiteWhale593
    @TheWhiteWhale593 3 ปีที่แล้ว +315

    What’s the standard deviation and at what point does a deviation become a mathematical impossibility? Asking for my ballot counting supervisor

    • @jasonransdell7055
      @jasonransdell7055 3 ปีที่แล้ว +58

      “Asking for my ballot counting supervisor.” 🤣🤡🌎
      🐸🐸🐸

    • @mickeydee3595
      @mickeydee3595 3 ปีที่แล้ว +3

      😂😅🤣😂😅🤣😂

    • @mosesolsonmd4063
      @mosesolsonmd4063 3 ปีที่แล้ว +16

      5.5 standard deviation above the mean for voter turn out in Wisconsin.

    • @Anonymous______________
      @Anonymous______________ 3 ปีที่แล้ว +15

      My understanding the median voter turnout rates float around 63% with the standard deviation of 7.5... oddly enough some of the districts Biden won are five standard deviations ahead of the mean which is statistically impossible.

    • @mosesolsonmd4063
      @mosesolsonmd4063 3 ปีที่แล้ว +8

      @@Anonymous______________ according to Wikipedia
      "6σ event corresponds to a chance of about two parts per billion. For illustration, if events are taken to occur daily, this would correspond to an event expected every 1.4 million years"

  • @dwaltrip77
    @dwaltrip77 7 ปีที่แล้ว +34

    Another way of looking at it: Each of the numerals only have an equal shot at being the leading digit if the distribution stops RIGHT before the next power of 10. Some examples of this would be if the distribution was from 1 to 9, or from 1 to 99, or 1 to 999, etc.
    If there is any extra "spare change" added to the size of the distribution, such as 1 to 99 being increased so that it now goes from 1 to 135, then that means there are 35 extra spots in the distribution that start with 1 (i.e. 100, 101, 102... 134, 135). These new options now make the number 1 a much more likely choice to be the leading digit.
    Distributions never end nicely right before the next order of magnitude, as the point right between orders of magnitudes is just an arbitrary spot on the number line [1]. This means there is almost always some "spare change".
    As 1 is the first number, it is the most likely to be part of the "spare change". When we go from one order of magnitude to the next, we go from the 9's to the 1's (99 --> 100, 999 --> 1000, etc). So, if the distribution crosses multiple orders of magnitudes, 1 always has the best shot at being the leading digit.
    2 is next in line after we leave the 1's -- 199 goes to 200, 1999 goes to 2000, etc. Thus, 2 has the 2nd best odds of being the leading digit. And then of course the same logic applies for 3, all the way down to 9 being the least likely.
    This gives us the shape of the graph in the video!
    [1] If we switch from base 10 to some other base, the points on the number line that mark the crossover from one order of magnitude to the next will all switch! But the number line itself hasn't changed -- we are simply relabeling the positions.

    • @dcisme5594
      @dcisme5594 3 ปีที่แล้ว +3

      This. Thank you.

  • @alexhenderson3364
    @alexhenderson3364 8 ปีที่แล้ว +351

    Benford's Law for numbers.
    Zipf's Law for words.
    Patterns are EVERYWHERE.

    • @NoConsequenc3
      @NoConsequenc3 8 ปีที่แล้ว +14

      +Bari Tenor Or they're nowhere and are instead part of the human mind's ability to comprehend things :^)

    • @alexhenderson3364
      @alexhenderson3364 8 ปีที่แล้ว +3

      So we impose our own internal reality on the world around us??? Nice.

    • @NoConsequenc3
      @NoConsequenc3 8 ปีที่แล้ว +7

      Bari Tenor
      Something like that. We take in information with our very limited senses, and our brain makes sense of it with very limited tools. It would follow that we do not experience reality, but rather that we experience our attempt at understanding information.
      IDK maybe I'm just bored, forget it

    • @huntrofyou
      @huntrofyou 8 ปีที่แล้ว

      +Bari Tenor They're not really caused from the same thing.

    • @alexhenderson3364
      @alexhenderson3364 8 ปีที่แล้ว

      hunterofyou Oh, of course. I understand that. I just like the fact that there seem to be similar-looking patterns for both areas.

  • @QuotePilgrim
    @QuotePilgrim 8 ปีที่แล้ว +1159

    In binary, the probability of the leading digit being a 1 is 100%.

    • @cnoize314
      @cnoize314 8 ปีที่แล้ว +102

      +QuotePilgrim Yep, and log2(1+1/1) = log2(2) = 1 !

    • @euanmcnicholas534
      @euanmcnicholas534 8 ปีที่แล้ว +23

      Can you think of a binary number that doesn't begin with a 1
      0010 is the same as 10

    • @hctcboy
      @hctcboy 8 ปีที่แล้ว +35

      +KingHades Na55 Use sig figs
      Everything here assumes we're not using numbers that begin in 0

    • @vaibhav2k13
      @vaibhav2k13 8 ปีที่แล้ว +49

      +QuotePilgrim What about 0?

    • @euanmcnicholas534
      @euanmcnicholas534 8 ปีที่แล้ว +4

      +MK Hammer I realise this aha. I was just explaining why :)

  • @zodfox9321
    @zodfox9321 4 ปีที่แล้ว +46

    The last explanation seemed most intuitive to me.

  • @weirdyoda04
    @weirdyoda04 3 ปีที่แล้ว +7

    I remember watching this video years ago and now fate has brought me back for a refresher.

    • @jhlapp9840
      @jhlapp9840 3 ปีที่แล้ว +1

      Same, but I came back for the comments.

  • @Sphere723
    @Sphere723 8 ปีที่แล้ว +14

    I make sense of it by thinking about lining up an infinite set of rulers end-to-end, running my finger over the top, stopping after some random amount of time and then adding up all the 1,2,3's etc. I've passed over. Obviously it all depends on where you stopped on the final ruler, but on that last ruler you've most likely passed 1, and least likely to have passed 9.
    Data sets which span a bunch of orders of magnitude and are not normally distributed are kinda like this; the numbers are finite and have to stop somewhere. But you have to think of each "ruler" as containing ~10x more data than the one before it (1-9 vs 10-99) . So the "final ruler" you stop on has great influence on the count as it has the most room for data.
    Within this "final ruler" you'll have a bunch of 1's but few 9's as the 1's with "fill up" first as we assume the data to be relatively smooth and finite. If the 9's where to "fill up" it would mean data spilling over in to the 1's of the next ruler and that becoming the "final ruler". So the 9's never really catch up.

    • @clockworkkirlia7475
      @clockworkkirlia7475 3 ปีที่แล้ว +1

      Ohhh this is a really clever and intuitive way of looking at it! Thanks!

  • @NoriMori1992
    @NoriMori1992 8 ปีที่แล้ว +60

    Steve has a lovely voice and accent.

  • @luizbobio137
    @luizbobio137 3 ปีที่แล้ว +586

    2020 election will sure introduce this law for a lot of persons.

    • @techpriestalex8730
      @techpriestalex8730 3 ปีที่แล้ว +38

      That's why I'm here

    • @Frankkendal1
      @Frankkendal1 3 ปีที่แล้ว +25

      Well that’s why I’m here

    • @anamarte9859
      @anamarte9859 3 ปีที่แล้ว +5

      Wait so how do I apply this?

    • @techpriestalex8730
      @techpriestalex8730 3 ปีที่แล้ว +11

      @@anamarte9859 you use log (n+1÷n) to get the number, I with my basically understanding if there is ever a number that is high then the total number of 1 then there is something wrong.

    • @israr8622
      @israr8622 3 ปีที่แล้ว +5

      Same here

  • @DeliciousDogMeat
    @DeliciousDogMeat 3 ปีที่แล้ว +9

    Ridin' with Benford

    • @magustrigger9195
      @magustrigger9195 3 ปีที่แล้ว

      Youd get in a car with a war criminal? Not safe, stranger danger and such

  • @Syberi388
    @Syberi388 3 ปีที่แล้ว +9

    suddenly relevant again
    would love to see the analytics for this video some day

  • @luminus3d
    @luminus3d 3 ปีที่แล้ว +4

    7:45 THANK YOU for this explanation! It makes so much sense when you think about it that way

  • @branllyr240
    @branllyr240 3 ปีที่แล้ว +18

    Huh. I remember watching this years ago. Funny how some things come around again. I love this timeline!

  • @keithrobertson2619
    @keithrobertson2619 3 ปีที่แล้ว +85

    Something tells me this video is gonna get A bunch more views here in the next couple days lol.

    • @x50nathan
      @x50nathan 3 ปีที่แล้ว +11

      And then get taken down for misinformation 🤣

    • @justanormalyoutubeuser3868
      @justanormalyoutubeuser3868 3 ปีที่แล้ว +2

      Matt Parker has already debunked that, check his video

  • @5gonza541
    @5gonza541 4 ปีที่แล้ว +22

    To me this was one of the most incredible videos on this channel, I really had no idea about this law. Amazing!

  • @Ofordgabings
    @Ofordgabings 8 ปีที่แล้ว +60

    I'd say Benford's law is intuitive. 1 is the default number, it's easiest to reach. It gets harder and harder to reach later numbers, so I'd expect a consistent downward curve, which is what the video shows. Fun stuff.

    • @dalek1099
      @dalek1099 8 ปีที่แล้ว +3

      +Ofordgabings Yes lets suppose that for a distribution the probability of x decreases as x gets larger this is true for several distributions(at least above a certain value) eg.think of countries it is harder to get to 90 million people than 10 million people or 900 million people as opposed to 100 million and thus the figures with the 1 in front always get the largest probability and then 2, then 3.

  • @peternguyen1899
    @peternguyen1899 3 ปีที่แล้ว +15

    When I fudge numbers on my tax returns, I always keep this theory in mind, and start it mostly with a '1'.

    • @MeltedMask
      @MeltedMask 2 ปีที่แล้ว

      Keep the greed at bay and nine away.

  • @darthnick77
    @darthnick77 ปีที่แล้ว +2

    This video is awesome! You explained Benford's law clearly in less than 10 minutes while some Netflix episode can't do it in 45 minutes.

  • @007bistromath
    @007bistromath 3 ปีที่แล้ว +4

    I loved this video when it came out. It better stick around now.

  • @ragestarfish
    @ragestarfish 10 ปีที่แล้ว +10

    I got a soft spot for scale invariance so I really enjoyed this. One of my favourite numberphile videos.

    • @AlenobaLP
      @AlenobaLP 2 ปีที่แล้ว

      Honestly this comment is 8 years old and I have no clue if you still use this account but omg that just sounds so cute. "I got a soft spot for scale invariance". ☺️🥰😊

  • @CSUChicoInvestorsclub
    @CSUChicoInvestorsclub 11 ปีที่แล้ว +16

    I love when you relate your cool math tips to finance! It makes it so much more fun to learn! Tax advice, NASDAQ example, you should do more math/finance stuff! :)

  • @annefrank7820
    @annefrank7820 8 ปีที่แล้ว +1

    great explanation and insight into benfords law. well done numberphile guys

  • @davidbeckham5579
    @davidbeckham5579 3 ปีที่แล้ว +6

    Make Benfords Law Great Again!

  • @Slithy
    @Slithy 11 ปีที่แล้ว +6

    Wow. This guy is so awesome! I wish i could draw such a large graph with such accuracy. This is so neat.

  • @enzaallegretti8991
    @enzaallegretti8991 3 ปีที่แล้ว +5

    Stand-up Maths just put out a great video explaining this in relation to the 2020 election results

  • @ambernectar3158
    @ambernectar3158 10 ปีที่แล้ว

    Fascinating, I do like your enthusiasm.

  • @TheJohnnyCalifornia
    @TheJohnnyCalifornia 9 ปีที่แล้ว +5

    radiolab's "numbers" episode mentioned this and it also had a segment where it seems that humans are born thinking "logarithmically" and later learn the conventional "counting" method of numbers which could explain why some people think that it would be natural for the digit "1" to be first more often.

    • @ineednochannelyoutube5384
      @ineednochannelyoutube5384 6 ปีที่แล้ว

      People indeed seem to think in exponents. Thats the only way to grasp existing differences in the scale of the world.

  • @basicallyeveryone
    @basicallyeveryone 3 ปีที่แล้ว +11

    What about TH-cam video views and subcriber counts? Will it work or will we detect fraud?

    • @magustrigger9195
      @magustrigger9195 3 ปีที่แล้ว

      You could check by looking at your subscribed list, it shows the channels and sub counts, or go to say pwediepie videos, as he has a massive collection spanning many years and check views or likes or what not easily

  • @2JustJoin
    @2JustJoin 10 ปีที่แล้ว +23

    Souldn't the log scale pattern start at the top in a W type pattern instaed of M, as the first measurement would be one digit of 1, thus 100%, the next being two digits of which 1 is represented by 50%. Not argueing the formula or the maths, just wondering about the log chart.

    • @whitechocolatehopkins3903
      @whitechocolatehopkins3903 6 ปีที่แล้ว +3

      Yeah, I noticed that too. Even starting with the raffle example, it should begin at 100%, then decrease towards the 10% range.

    • @soumyadatta4514
      @soumyadatta4514 3 ปีที่แล้ว

      Yes, I also thought it would be a saw tooth wave, but mirror image of what Steve have show. I mean sharply increasing then falling with a decay constant, not the opposite. Because the moment you reach an integer of 10, probability rapidly increases and then continue to fall slowly upto next rapid increment.

  • @AlexisGelinas
    @AlexisGelinas 10 ปีที่แล้ว +1

    I work for a broadband cable provider in the US, assisting customers via web chat. I checked the chat session times (in seconds) and sure enough, the distribution followed benfords law almost exactly. This makes a lot of sense because average session time is around 960 seconds. There's a lot more chats in the 1000-2000 second range than there are in the 900-1000 second range

  • @jaredcherry7593
    @jaredcherry7593 3 ปีที่แล้ว +1

    Very well explained. Thank you for this.

  • @s108745
    @s108745 9 ปีที่แล้ว +14

    I wanted to see this for myself, so I did this in Excel. In column A, I put all numbers (1 to whatever) and for every number I looked what the first digit was. At 1, I only found one number starting with 1. At 2, I found one number starting with 1 and one starting with 2, and so on. For every number I calculated the percentage (also counting the previous percentages). I did this for the numbers 1 to 9,999. I got a beautiful graph with in the end the following percentages:
    1: 24,1547%
    2: 18,3273%
    3: 14,5466%
    4: 11,7363%
    5: 9,4973%
    6: 7,6356%
    7: 6,0420%
    8: 4,6489%
    9: 3,4112%

    • @angusc2042
      @angusc2042 7 ปีที่แล้ว

      Hi Koen,
      I was just wondering how you made the graph as I am needing to make this for a maths project I am doing.

    • @krowa1010
      @krowa1010 4 ปีที่แล้ว +2

      ?? it doesnt work like that man- with a normal distribution like the one you mentioned the probalability of starting from any of the above numbers is equal, so i dont know how you got such a solution

    • @s108745
      @s108745 4 ปีที่แล้ว

      @@krowa1010 I'm gonna be honest with you. This is a very old comment. I vaguely remember it. I can't really remember the video either. I'm not sure if I calculated something and my explanation is just bad or that I made a mistake. But reading this now, I can only say that you are right. There's clearly not a 25% chance that a random number starts with a 1. Maybe I'll watch the video again. If I find out what I actually meant, I'll let you know. Otherwise, we'll speak eachother in 5 years. ;)

  • @kiabaha7271
    @kiabaha7271 3 ปีที่แล้ว +21

    @3:12 Look at the example article. Do you believe now?

  • @1994ramfan
    @1994ramfan 3 ปีที่แล้ว +2

    Great video! I love how you explained it. I was one of the dummy's like "whaaaatttt noooo wayyy, even distribution"

  • @constantinople999
    @constantinople999 11 ปีที่แล้ว

    So happy that I am the owner of this piece of paper! A nice piece of numberphile history from yet another great video

  • @jpr1011
    @jpr1011 11 ปีที่แล้ว +5

    I'd love to see a video on uncomputable numbers. You could do a series starting with the integers, then moving on to rationals, reals, complexes, and computables/incomputables

  • @marianna2933
    @marianna2933 3 ปีที่แล้ว +13

    I’m gonna need him to explain the election results now lol

    • @justanormalyoutubeuser3868
      @justanormalyoutubeuser3868 3 ปีที่แล้ว +2

      Matt Parker has already debunked this fraud claim, check out his video

    • @marianna2933
      @marianna2933 3 ปีที่แล้ว

      @@justanormalyoutubeuser3868 thanks, I’ll check it out

  • @Bbonno
    @Bbonno 10 ปีที่แล้ว

    I knew of this, and for the first 7 minutes I was wondering how it would work in other bases... and then you answered it. Nice!

  • @ericsbuds
    @ericsbuds 11 ปีที่แล้ว

    great video brady. and great explanation. this would be a cool brown paper to have

  • @Peepholecircus
    @Peepholecircus 3 ปีที่แล้ว +6

    @3:12 lol , I know it, you know it, we all know it! right?
    you know why you're here XD

  • @ambro987
    @ambro987 3 ปีที่แล้ว +20

    This video will get censored or demonitized

  • @Cythil
    @Cythil 11 ปีที่แล้ว

    The last description is something I have noticed so I knew that 1 tend to hang around a lot more then 9. Simply put: Everything starts with 1 so 1 should be more common. But good video that gives several different perspective on this phenomena.

  • @MonkOrMan
    @MonkOrMan 2 ปีที่แล้ว

    Wow, great explanations! Thank you!

  • @masonqualls9888
    @masonqualls9888 3 ปีที่แล้ว +16

    We're about to have a civil war over this lol.

    • @southafricanizationofsociety20
      @southafricanizationofsociety20 3 ปีที่แล้ว +3

      “Benford’s Law, Right Flank! Standard Deviation, Left Flank! Charge!!!”

    • @magicskyfairy69
      @magicskyfairy69 3 ปีที่แล้ว

      @TheKillSwitch they don't need to fight, cuz if we're being honest, you know the republicans aren't gonna do anything. Despite media claims of "right wing militias", it's the left that actually burns things to the ground and attacks people at random over ideology. A few exceptions on the right? Sure, a couple shooters here and there, but if we're talking about whole mobs burning down cities, that's 100% the left.

    • @masonqualls9888
      @masonqualls9888 3 ปีที่แล้ว

      @@magicskyfairy69 It might come down to people being attacked regularly in pockets for stating political views, which is no way to live together. We're not far off from that reality already.

    • @magicskyfairy69
      @magicskyfairy69 3 ปีที่แล้ว

      @@masonqualls9888 so the right will be quiet. and our kids will be propagandized to join the SJWs. then there will be no more "right". Given the trajectory, there will eventually be communists, and socialists will be the new right wing. The idea of being a libertarian or conservative will just fade away.

  • @cameron7886
    @cameron7886 3 ปีที่แล้ว +6

    For the election data gathered by county, you have to realize that most counties are cut up into roughly equally populated zones. So immediately that's problematic for Benford's law, because you need a very wide distribution of numbers, and counties are PURPOSEFULLY made to be roughly equal in population size.
    The election returns for Biden by county weren't orders of magnitudes different from each other, they're within 100-1000. A wider distribution is REQUIRED to trigger Benford's Law. Keep in mind, the law only works, because "leading 1s" return every time you hit a new order of magnitude. It was not triggered for Biden because his performance was consistently within a single order of magnitude. Since this condition is not satisfied, you have to look at the last digit of the county returns, which should be evenly distributed 1-9, and indeed they are for Biden.
    Donald Trump's returns do follow Benford's law, because his range of performance was larger by county-10s-1000s-spanning two orders of magnitude. This is why his results DO satisfy Benford's law.
    EDIT: I said counties when I meant districts

    • @cameron7886
      @cameron7886 3 ปีที่แล้ว +3

      @Hyakkaten Trump's victory would defy logic. Luckily he didn't win, so we get to keep logic

  • @dkv1201
    @dkv1201 8 หลายเดือนก่อน

    Fascinating. Informative. Enriching. Gracias

  • @jesusthroughmary
    @jesusthroughmary 11 ปีที่แล้ว +1

    Brilliant and succinct explanation. Saved me 9 minutes. Thank you.

  • @Shutupasecond
    @Shutupasecond 3 ปีที่แล้ว +38

    Did you ever forsee this video being an integral part of the 2020 US election?! Haha

  • @calansmith655
    @calansmith655 3 ปีที่แล้ว +16

    For all of the people commenting about elections, see Matt Parker’s video on the exact topic

    • @clockworkkirlia7475
      @clockworkkirlia7475 3 ปีที่แล้ว +1

      Yo, everyone scrolling past, do please comment on this to give it a signal boost.

    • @robinsonrobinson7503
      @robinsonrobinson7503 3 ปีที่แล้ว +1

      @@clockworkkirlia7475 aight

    • @aidentaylor5038
      @aidentaylor5038 3 ปีที่แล้ว +1

      @@clockworkkirlia7475 alright

    • @kookykutter69
      @kookykutter69 3 ปีที่แล้ว +1

      @@clockworkkirlia7475alright

    • @noincognito1903
      @noincognito1903 3 ปีที่แล้ว +1

      @@kookykutter69 alright

  • @eoghan.5003
    @eoghan.5003 3 ปีที่แล้ว +1

    The way that it intuitively made sense to me as soon as he said the law was as follows:
    As we go up through the numbers we could stop at any point (this is the highest value in our set). No matter what the highest value is, the probability of any value below it starting with 1 can never be beneath 11%. However in most cases it will be above 11%, because we'll have gone through all the 1s but not all the other numbers.

  • @geoffnet1
    @geoffnet1 11 ปีที่แล้ว

    This became intuitive the moment I pictured log graph paper. Suppose that each power of 10 is 1 cm high, and you collected a random sample of heights from 0 to n cm and graphed them. The distance from 1*10^m to 2*10^m is about 0.30103 cm (for any m), so it makes sense that there would be about 30.1% of the numbers landing in these sections.
    Another way to think of it is that 10^x for any x>0 will have a leading 1 if the decimal part of x is between .0 and .30103.

  • @ravenasana
    @ravenasana 3 ปีที่แล้ว +5

    Thanks for explaining this. Saw this idea on Connected but felt unsatisfied with their insinuation that this was some kind of proof of numerical "fate" ... this explanation makes much more sense to me... or at least I think it does 😅😂

    • @mattc5937
      @mattc5937 3 ปีที่แล้ว

      Agreed. I saw this on Connected as well and was completely fascinated by the "fate" aspect they presented. I now know they went that route purely for entertainment purposes as this video more clearly explains Benford's law in a much shorter video length. Interestingly the popularity of this video has sky rocketed after our recent US election from people who do not fully understand Benford's law and are using it as "proof" that Trump actually won the US election. Ughhhh!

  • @numberphile
    @numberphile  11 ปีที่แล้ว +10

    great - glad to have helped.

    • @DiogenesTheCynic.
      @DiogenesTheCynic. 3 ปีที่แล้ว +2

      heads up, you about to get more popular :)

  • @Jotto999
    @Jotto999 11 ปีที่แล้ว

    I'm generally lousy with math, but I can proudly say this made intuitive sense to me. It's easy to imagine that going from a per capita PPP GDP of 10,000 to 20,000 should be vastly more difficult than going from 90,000 to 100,000, because of how much harder it is to double productivity at any level than squeezing out another 11% - which then leads to being back at that numerical wall of having to double, triple, X4-9 again. What's neat is that this effect persists with different base sizes.

  • @justicesportsman6020
    @justicesportsman6020 3 ปีที่แล้ว +1

    Seeing this video for a second time makes me feel old. 7 years ago didn't feel that log ago, the video quality says differently.

  • @Mectojic
    @Mectojic 8 ปีที่แล้ว +6

    Came back after the powers of 2 video, it's still hard to believe!

    • @Rekko82
      @Rekko82 6 ปีที่แล้ว

      Do powers of 2 obey the Benford's law? 1, 2,,4,8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192,16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608,16777216, 33554432, 671008864, 134217728, 268435456, 536870912...when will I get a number that starts with 9?

  • @johnjackson9767
    @johnjackson9767 3 ปีที่แล้ว +7

    Huh. Wonder why this could possibly be trending.

  • @terapode
    @terapode 10 ปีที่แล้ว +1

    What interesting statement: "We usually don´t hang on with nines"... Great video, Brady.

  • @elarsen7823
    @elarsen7823 11 ปีที่แล้ว +1

    What I learned from this video: "No one is nine meters tall."
    All joking aside, this is an incredibly interesting concept, and I'm glad I discovered the magic of Numberphile. Keep up the good work, guys!

    • @thomasramquist645
      @thomasramquist645 4 ปีที่แล้ว

      elarsen7823
      Once this is all locked down by all the teams.... I guess you will ready to launch the next internet!!

  • @mfundroid1116
    @mfundroid1116 3 ปีที่แล้ว +24

    US Election 2020 has forced me to learn a Maths Law that I've never heard of and to be honest, I don't mind. The next two months are gonna be lit.

  • @rylandchase488
    @rylandchase488 3 ปีที่แล้ว +4

    Just to be clear for everyone who doesn't understand the law properly. This law only works when you data is over many different orders of magnitude. Because precincts are all relatively the same size, it does not apply.

    • @doppelhelixes
      @doppelhelixes 3 ปีที่แล้ว

      just compare previous years data. That will prove or disprove it. No need for guesswork when we can use facts

    • @teresaradsick7314
      @teresaradsick7314 2 ปีที่แล้ว

      Can't you use the final totals instead of individual precincts?

  • @DaveScottAggie
    @DaveScottAggie 3 ปีที่แล้ว +1

    As of August, 2020 - the NASDAQ is about 11 thousand. This video has 1306 comments and 11 thousand likes (160 dislikes). The video had 656 thousand views. And Numberphile has 3.4 million subscribers.

  • @jezzbanger
    @jezzbanger 11 ปีที่แล้ว

    This was fun. Please do some videos on other maths tricks used in numerical forensics!

  • @austinliu1043
    @austinliu1043 7 ปีที่แล้ว +3

    Does Benford's Law remain true for different number bases? If you took data that conformed to Benford's law in Base 10, and converted it to Base 7, or Base 9, would it still conform to the law? What about higher bases?

    • @pmorse0000
      @pmorse0000 6 ปีที่แล้ว

      one is still the most frequent number (it is the lowest number so you're gonna hit that if anything, and lower chances up and up. they dont say that but that is best explanation)

    • @tryingsmall
      @tryingsmall 6 ปีที่แล้ว +1

      It remains true for all bases. The key to understanding it is that the distribution must be independent of normalization. For example, if you multiply all the numbers in your data set by a constant then the distribution of leading digit probabilities must remain the same.

  • @shaolincheck347
    @shaolincheck347 3 ปีที่แล้ว +48

    tfw your vote batches cluster around five

    • @CorrectCrusader
      @CorrectCrusader 3 ปีที่แล้ว +4

      totally not fraud. nothing to see here.

    • @currently7886
      @currently7886 3 ปีที่แล้ว +4

      Biden right now "WHY MICHIGAN & WISCONSIN!? WHY?!"

    • @branllyr240
      @branllyr240 3 ปีที่แล้ว +6

      Smooth brain on the fixer team, rip democrats.

    • @juggernaut316
      @juggernaut316 3 ปีที่แล้ว +1

      oops

    • @berserkasaurusrex4233
      @berserkasaurusrex4233 3 ปีที่แล้ว

      Biden skipped two during the debate. He went straight from "Point one" to "and point three". Maybe that's why his fake ballots are throwing off the distribution.

  • @crustyferret8956
    @crustyferret8956 2 ปีที่แล้ว +1

    I love how this video feels like it’s been shot the morning after a wedding and everyone else in the hotel is still in bed

  • @NetAndyCz
    @NetAndyCz 8 ปีที่แล้ว +1

    Does it have something to do with when you have logarithmic x axis, the bit from 10-19 is rather big, the 20-29 bit smaller and the 90-99 is really small and then the sizes repeat at 100-199 (and 200-299 and 900-999) and so on?

  • @anishjha8919
    @anishjha8919 3 ปีที่แล้ว +7

    Who came after after Stand-Up Maths video???
    Well, I did anyway

    • @clockworkkirlia7475
      @clockworkkirlia7475 3 ปีที่แล้ว +4

      I did! This is one exhausting comments section huh.

    • @dandelo6479
      @dandelo6479 3 ปีที่แล้ว +2

      @@clockworkkirlia7475 Trump fanatics watch one video on a law they heard about two minutes ago and suddenly receive Nobel prizes in statistics.

    • @baileyjorgensen2983
      @baileyjorgensen2983 3 ปีที่แล้ว

      I did.

    • @baileyjorgensen2983
      @baileyjorgensen2983 3 ปีที่แล้ว

      @@dandelo6479 lol

  • @Ultiminati
    @Ultiminati 3 ปีที่แล้ว +5

    Matt Parker made a video about this, about 2020 election and just watch it before checking out any comments below.

    • @zylan4967
      @zylan4967 3 ปีที่แล้ว +3

      That is why I am here as well. It is worrying how many people think it is election fraud based on this.

    • @Ultiminati
      @Ultiminati 3 ปีที่แล้ว

      @@zylan4967 :/

  • @subh1
    @subh1 11 ปีที่แล้ว

    Simple explanation: Draw the logarithmic scale along an axis. Paint red the regions where the numbers start with 1. The red paint will occupy about 30% of the line.
    So, the assumption behind the underlying distribution from which the numbers are being drawn is that it should be an uniform distribution over the logarithmic scale.
    Thus, if f(x) is the actual probability density, we should have f(x) = 1/x. [∵ if y=ln(x), F(y)=1 is distribution over y. Relationship: \int F(y) dy = \int f(x) dx]

  • @mizmorledavidhashem104
    @mizmorledavidhashem104 4 ปีที่แล้ว

    Could you please explain if the exam is a test? What are the main topics that are included? When is the exam? What should Shonee review?

  • @Glockmog2007
    @Glockmog2007 3 ปีที่แล้ว +29

    Ladies and gentlemen, we got him.

    • @juggernaut316
      @juggernaut316 3 ปีที่แล้ว +2

      cuff him

    • @DaDunge
      @DaDunge 3 ปีที่แล้ว +2

      The only thing you've got is crappy listening skills the results need to span many orders of magnitude the us election results per voting district span between 100-1000, one order or magnitude which means Benford's law is useless.

  • @currently7886
    @currently7886 3 ปีที่แล้ว +12

    hi /pol/

  • @hengshenglee9635
    @hengshenglee9635 5 หลายเดือนก่อน

    2:36 does Benford's law still apply after applying transformations to a population? In the case of human heights, maybe we could take the exponential of a multiple of the numbers? Or any other transformation that could possibly spread the numbers out such that they are in different magnitudes

  • @davidwilkie9551
    @davidwilkie9551 6 ปีที่แล้ว

    Time is prime.., because the connection of information has probability one, infinity/infinity = *, so all identity is some selection of characteristic proportion in reciprocal proportion, which-when the selection process is exponential, leads to an intersection of natural logarithm (including every and all numerical bases in "e", continuous).
    An actual Mathematician could deduce the probability of the natural occurrence of identities in other number bases, but I'm only committed to comments.
    Professor John D Barrow has presented a very impressive lecture on this topic.
    _____
    In a manner of (QM-Time mathematical Intuition) speaking.., if this aspect of here-now is the metastable tip of the topological iceberg, the incident cause-effect of e-Pi rationalisation i-reflection modulation, then the natural probability occurrence of potential possibilities in the Universal Quantum Computation is a continuous expression of the number proportions perceived as Benford's Law...

  • @_vicary
    @_vicary 3 ปีที่แล้ว +178

    The election in 2020 may take way longer than before.

    • @hamoshytube1853
      @hamoshytube1853 3 ปีที่แล้ว +2

      @SmoovCat biden was confirmed winner

    • @hamoshytube1853
      @hamoshytube1853 3 ปีที่แล้ว +1

      @SmoovCat literally every time the media says the winner they get it correct

    • @BasedBowlCutEnjoyer
      @BasedBowlCutEnjoyer 3 ปีที่แล้ว +2

      @@hamoshytube1853 George Bush vs John Kerry ring a bell? You're a literal NPC.

    • @hamoshytube1853
      @hamoshytube1853 3 ปีที่แล้ว +1

      @@BasedBowlCutEnjoyer sorry bro i was born on 2006 and i am not american so i dont know what happened in america before 2006

    • @conormcmullin4235
      @conormcmullin4235 3 ปีที่แล้ว +1

      @@hamoshytube1853 then dont make false claims

  • @lambdacode1503
    @lambdacode1503 3 ปีที่แล้ว +111

    Somehow it feels relevant now with the election and all but I can't really put my finger on the reason...

    • @MisterFanwank
      @MisterFanwank 3 ปีที่แล้ว +5

      Same, but I'm sure some deboonker will set me straight by saying I'm a cOnSpIrAcY tHeOrIsT.

    • @LJCyrus1
      @LJCyrus1 3 ปีที่แล้ว +4

      Benford's law is not useful for predicting election fraud.
      Benford's law deviations do not prove voter fraud by themselves, further evidence is required.

    • @zoeherriot
      @zoeherriot 3 ปีที่แล้ว +5

      @@MisterFanwank well yes, because benford's law does not work well with election results. If you actually apply it to some of Trump's results, it shows fraud. Not because Trump committed fraud, but because the number of votes in various districts were not orders of magnitude different. There are papers on this demonstrating that Benfords law is about as useful as a toin coss for determining potential fraud in election results (i.e. not very).

  • @IvanMirisola
    @IvanMirisola 5 ปีที่แล้ว

    Would this work for forgery detection on electronic voting? After election you would have the amount of candidate votes per region or ballots, etc. Would it be possible to figure out if in the universe of total voters some have been tempered with?

  • @joshwollberg
    @joshwollberg 11 ปีที่แล้ว

    Go back to the video and watch the part referring to the raffle. The chance of finding 1 as the leading digit goes up and down depending on the size of the raffle (when simply counting 1 to x, one number at a time). Of course, if you just count 1-9, then the chance is the same as any other digit. BUT, if you count 1-19, then the chance is much higher. When you get to 1-99, you're back down, but then 1-1999 you jump up again. This chance averaging tends to work the same with random numbers.

  • @DestroyerX61
    @DestroyerX61 3 ปีที่แล้ว +10

    You can see him in 3:12

  • @spazmobot
    @spazmobot 8 ปีที่แล้ว +119

    He's adorable.

  • @gumboperkins3775
    @gumboperkins3775 3 ปีที่แล้ว +1

    Frank Benford: ironic that he was born in PA- no? He might be The American Patriot we never knew we needed.

  • @TimpBizkit
    @TimpBizkit 5 ปีที่แล้ว

    So would it be the mean proportion of leading values in lists of natural numbers starting from 1. e.g. the average leading value in 1; 1,2; 1,2,3; ............ 1,2,3,4,5,......,1000 etc. This would give you 1+1/2+1/3+.....+1/9+2/10+3/11+4/12+.......+11/19 and then divide that sum by the number of sets e.g. 19 in this case.
    Or would it also include all possible sets that don't start with one? Maybe you don't even have to increase 1 at a time, it can be random sets of any natural numbers.

  • @douggief1367
    @douggief1367 4 ปีที่แล้ว +4

    I love how his beard matches his jacket.

  • @Rayon.Miller95
    @Rayon.Miller95 3 ปีที่แล้ว +282

    who's here after watching connected on Netflix? 😂😅

  • @TheCort3z
    @TheCort3z 11 ปีที่แล้ว

    Funny how they basicly described the way I was thinking about it at the end :) Nice video

  • @erikanovember9485
    @erikanovember9485 8 หลายเดือนก่อน

    Is roulette wheel too short of a distribution. Or could we assume 1 and 11-19 would be the highest frequency ,2 and 20 - 29 ranking second, 3 and 30-39 third and so on and so forth.

  • @BillKilmerslayer
    @BillKilmerslayer 9 ปีที่แล้ว +19

    To me, this was always intuitive. You can't have 2 without 1. You can't have 3 without 2, without 1, etc. There will always be more starting units than the ones that follow. All sequences must end, and they will end at an arbitrary point. But they all start with the start, here being 1. Always the same start, but with differing endings, regardless of Base. More of the starting point than any individual terminus.

    • @diegouzeda2491
      @diegouzeda2491 8 ปีที่แล้ว +2

      +Bill Kilmer Yes. This is like saying the leadoff (#1) batter always get more plate appearances during the course of the year...It´s intuitive

    • @LakierosJordy
      @LakierosJordy 8 ปีที่แล้ว +1

      +Bill Kilmer Thanks. Your comment helped me wrap my head around it. It makes so much more sense now.

    • @TheHuesSciTech
      @TheHuesSciTech 8 ปีที่แล้ว +2

      +Bill Kilmer If every country had a new birth every X seconds, where X was a *fixed* number for each country (contrived example I know, but stick with me), Benford's law would *not* hold, even though it's true there that 1 comes before 2, which comes before 3, etc, etc. Benford's law only appears when things travel along exponential trends (i.e., as the population of a country increases, its birthrate increases, so it spends *more time* getting from 1 million to 2 million that it takes to get from 8 million to 9 million, so of course if you look at all the countries in the world, more of them are in the 1xxxx to 2xxxxx phase than the others; it takes a long time to *double* your population).
      Put another way, your attempted explanation fails to explain why a full 30.1% starts with the digit 1; that number comes from log(2) - log(1); logarithms or exponentials have to be in a proper explanation somewhere.

    • @BillKilmerslayer
      @BillKilmerslayer 8 ปีที่แล้ว

      Wasn't attempting a proper explanation. Just an (over) simplified, and as stated, intuitive understanding. The above video, and plenty of other articles, give the proper explanation.

    • @exoice3582
      @exoice3582 8 ปีที่แล้ว

      +Bill Kilmer well said. wrapped up all the confusion in a couple of sentences.

  • @pencilpen786
    @pencilpen786 8 ปีที่แล้ว +17

    Is this similar to Zipf's law?

  • @f1f1s
    @f1f1s 10 ปีที่แล้ว +1

    My favourite host, dark, relaxed and charming, along with Matt Parker.

  • @shedvortex
    @shedvortex 3 ปีที่แล้ว +2

    I wonder if this could relate to number of corners in in "prime" geometries like platonic solids or even prime numbers. Would be a facinating tie in to geometric music language and fibonnaci sequences.

    • @currently7886
      @currently7886 3 ปีที่แล้ว

      It does work for Fibonacci sequences, I just did the first 100 numbers of Fibonacci and it was tracking pretty close the entire time. I'm sure if I continued it would also be aligned with this Law

  • @RyanKellyWx
    @RyanKellyWx 3 ปีที่แล้ว +10

    Benford Biden

  • @ogredani
    @ogredani 11 ปีที่แล้ว +3

    Look, it's Harry Potter. Grown up and lost the glasses. :) Love the accent!

  • @nikitakucherov5028
    @nikitakucherov5028 3 ปีที่แล้ว

    This is just awesome!

  • @vinayaknayak7374
    @vinayaknayak7374 8 ปีที่แล้ว

    How about trying to figure the distribution of number of ones present in a number expressed in binary as we proceed infinitely? What king of distribution does it follow?
    i.e. The number of times one is encountered in a number (expressed in binary) on the Y-axis
    & The number itself on the X-axis? Would it follow the same pattern as the one in the video?