[Linear Algebra] Linear Independence

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 ธ.ค. 2024

ความคิดเห็น • 48

  • @doodelay
    @doodelay 4 ปีที่แล้ว +1

    At 9:30 You can easily prove the theorem that if there's more vectors than dimensions in a vector space, than there must be at least one linear dependence by way of the pigeonhole principle. The pigeonhole principle says this same thing but it's more general; that if there's B spaces and greater than or equal to B+1 items, then there must be overlap of more than one item per space.

  • @SmashBrosBrawl
    @SmashBrosBrawl 7 ปีที่แล้ว +17

    Best video series of Linear Algebra that i have seen

  • @sushmitanigam4979
    @sushmitanigam4979 7 ปีที่แล้ว +35

    i dont know why it has got so less views. it is one of the best lecture.

  • @jessicanutter6730
    @jessicanutter6730 7 ปีที่แล้ว +9

    Thank you! This video really helped explained things far more clearly than my professor ever did.

  • @bassamwehbe4412
    @bassamwehbe4412 2 ปีที่แล้ว +1

    By far the best linear algebra professor. THANK YOUU

  • @anakinkylo.thepomenerianan9084
    @anakinkylo.thepomenerianan9084 4 ปีที่แล้ว +1

    just want to say thanks watching these videos while learning from sheldon axler linear algebra textbook and it really helps. thank you

  • @SandraHills6045
    @SandraHills6045 3 ปีที่แล้ว +2

    Thank you so much! This is the first time I'm really able to visualize this concept

  • @anonymousjanitor270
    @anonymousjanitor270 4 ปีที่แล้ว +4

    These match with my uni course sequence perfectly, thank you so much

  • @TheNetkrot
    @TheNetkrot 4 ปีที่แล้ว +1

    This is good ...thank you so much .... I am now going to look at all of your work (most of it .... this sentence is linearly independent)

  • @MrSchaus
    @MrSchaus 4 ปีที่แล้ว +2

    Thank you! I was struggling with this concept and now it makes perfect sense!

  • @richardpinter9218
    @richardpinter9218 6 ปีที่แล้ว +2

    Big thanks for the videos! Easy, clear explanations . Keep up the good work, champ!

  • @namehere630
    @namehere630 3 ปีที่แล้ว +1

    This is extremely helpful. Thank you.

  • @stanley2747
    @stanley2747 ปีที่แล้ว

    6:11 what if i have something like 2x1 = -x2, is it dependent then?

  • @IZZY3201
    @IZZY3201 4 ปีที่แล้ว

    Thank you for the video! Helped me understand

  • @p2p2p2p2p2p
    @p2p2p2p2p2p 3 ปีที่แล้ว

    you are the best trev

  • @olaradwan8937
    @olaradwan8937 5 ปีที่แล้ว +1

    Hey, great video but I've one question. Why did you multiply all the vectors by 0 (min 14:40)?

  • @joseguapo854
    @joseguapo854 6 ปีที่แล้ว

    thanks so much your videos are so helpful

  • @puttatidam.1819
    @puttatidam.1819 6 ปีที่แล้ว

    Thank you so much. You are such life saver

    • @lemyul
      @lemyul 5 ปีที่แล้ว

      whoa that name

  • @allenzheng8476
    @allenzheng8476 5 ปีที่แล้ว

    I don’t usually comment but thank you for making these videos

  • @courtneestaine5937
    @courtneestaine5937 4 ปีที่แล้ว

    if a set of 3 vectors are linearly dependent, would the vectors span r2? would the set of m vectors have to be linearly independent to span rm?

  • @amberheard2869
    @amberheard2869 5 ปีที่แล้ว

    I was struggling with linear dependent mean no new info was added now it is clear but there is further more thing i need to learn than simple calculation

    • @sanashahid324
      @sanashahid324 4 ปีที่แล้ว

      Which book he used to explain these questions Kindly tell the name of book . Thanks in advance 😊

  • @knight_kazul
    @knight_kazul 5 ปีที่แล้ว

    @TheTrevTutor How do I determine, if matrices are lineraly dependent?

    • @Junior4466
      @Junior4466 5 ปีที่แล้ว

      {TheEmptySet} make an even bigger matrix B. Then rewrite matrix 1 as first column in B, matrix 2 written in second column of B, etc. Solve for the homogeneous matrix B, like he does in the video.

  • @kkamous7278
    @kkamous7278 6 ปีที่แล้ว

    You are the great,,,, love u

  • @mikemyne266
    @mikemyne266 3 ปีที่แล้ว

    I think the example you used is linearly dependent cause of 13

    • @HenrikMonsen
      @HenrikMonsen 3 ปีที่แล้ว

      For any future viewers thinking the same .. you can divide the bottom row by 13 (13/13) to get 1 since the answer (0) will not be affected --> full rank --> linearly independent

  • @sushmitanigam4979
    @sushmitanigam4979 7 ปีที่แล้ว

    what if the no of equations and unknowns equal?? still we have to solve and check right?? we cannot conclude anything without solving? am i right??

    • @jacobm7026
      @jacobm7026 6 ปีที่แล้ว

      correct

    • @AP-pm9qy
      @AP-pm9qy 5 ปีที่แล้ว

      @@jacobm7026 Yeah I don't get it because surely one vector can be a linear combination of another so it would be redundant making it linearly dependant or am I missing something? [edit] never mind he answers it in 14:00

  • @tF6U
    @tF6U 6 ปีที่แล้ว +1

    god fucking bless you man

  • @dtalmood
    @dtalmood 5 ปีที่แล้ว +3

    I wish more professor would explain geometrically what happens when we do linear so we could actually under stand wtf is happening.

  • @Thepianobird
    @Thepianobird 5 ปีที่แล้ว

    Im a little confused how there are no free variable when not all the columns have a 1. The last column has (-1,4,13) how is this not a free variable?

    • @Jacksonians
      @Jacksonians ปีที่แล้ว +1

      3 years late, but when you completely row reduce to reduced echelon form, u find that the last column is (0 0 1). Which is a pivot column. What he did was he used the 13 as a leading entry in echelon form, which also signifies that it is a pivot. Both ways work, but I find the reduced echelon form where the last column is (0 0 1) a bit easier to understand.

  • @dexternierva6503
    @dexternierva6503 5 ปีที่แล้ว +1

    I really don't know how he got the row 0 -2 5 at 4:55

    • @drakeahmed5133
      @drakeahmed5133 5 ปีที่แล้ว

      he took the second row and multiplied it by -5 and then added the third row to give the new third row : -5R2 +R3 --->R3. where R = row number

    • @dexternierva6503
      @dexternierva6503 5 ปีที่แล้ว

      @@drakeahmed5133 thank you very much sir!

  • @youraveragenoor
    @youraveragenoor 11 วันที่ผ่านมา

    Guys did anyone understand the theorem and the proof?

  • @tanujsingh533
    @tanujsingh533 5 ปีที่แล้ว

    When the solution is trivial, the vectors are linearly Independent then how comes in the last 1x1 zero matrix, was your solution non-trivial! You just declared it Dependent, cah like bruv wtf

  • @lemyul
    @lemyul 5 ปีที่แล้ว

    no dislike yet. rare

  • @pradipjadhav693
    @pradipjadhav693 6 ปีที่แล้ว

    Plz make hindi or marathi