Linear Algebra - Lecture 39: The Characteristic Polynomial and Multiplicity

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 ธ.ค. 2024

ความคิดเห็น • 4

  • @mohammadulbaqirrampurawala-y2x
    @mohammadulbaqirrampurawala-y2x ปีที่แล้ว +1

    Thank you! you explained it very well in simple language, I will pass in my exam because of you!

  • @AG-cf9et
    @AG-cf9et 3 ปีที่แล้ว +1

    In which cases does the alg multiplicity differ from geometric and why? In the cases where the quadratic nxn Matrix does transform on a lower dimensional subspace (det=0) it‘s clear, the Eigenvectors can not span the whole n dim space but in this example at the beginning even though we have full rank, the eigenvectors don‘t span the whole R3. Why not?

    • @Jnglfvr
      @Jnglfvr 2 ปีที่แล้ว

      The geometric multiplicity is the dimension of the nullspace of A - lambda*I not the dimension of the nullspace of A. Matrix A can be full rank (say n) and yet A - lambda*I may have rank n -1 or n -2 etc etc. The eigenvectors (v) corresponding to eigenvalue lambda satisfy the nullspace equation (A - lambda*I ) * v = 0. If rank A - lambda*I = n-1 then the nullspace has only a single eigenvector. If rank A - lambda*I = n -2 then the nullspace has 2 eigenvectors for that eigenvalue. This follows from the rank nullity theorem whereby dimension nullspace + rank = n. The matrix A - lambda*I is ALWAYS singular.

    • @Jnglfvr
      @Jnglfvr 2 ปีที่แล้ว

      I should add that the rank of A - lambda*I is not necessarily less than the rank of A. In fact they could be identical. E.g., take any singular 2 X 2 matrix with 2 distinct eigenvalues. In that case rank A = 1 and rank A - lambda*I = 1 also. Each eigenspace will have dimension = 1.