Thanks for the Question. It actually comes through the binomial theorem. Simply in nutshell when a binomial is having power n, then the number of terms will be n+1. (a+b) is having the power 2, therefore no of terms will be 3.
(a+b)²=a²+b²+2ab Yaha par "=" sign k LHS mei (a+b)² likha hai aur sign k RHS mei (+2ab) hai.. so, jab RHS se LHS ko +2ab ko laya jayega uska sign change ho jata h.... Agar negative hai toh positive mei aur agar positive hota h toh negative mei... Yaha par positive hai joki +2ab... So wo RHS mei -2ab ho jayega... Hence, (a+b)²-2ab=a²+b² That is... a²+b²=(a+b)²-2ab...
We know (a² + b²) cannot be factorized into real factors?
Question: Can (a⁴ + b⁴) be factorized into real factors?
Answer: YES. (a⁴ + b⁴) = (a²)² + (b²)² = (a² + b²)² - 2.a².b²
= (a² + b²)² - (ab√2)² = (a² + b² - ab√2).(a² + b² + ab√2).
a² + b² = (a+b)²-2ab.
Amazing explanation 👍
💯Thanks sir.
New subscriber bro❤
0:34
Sir how -2ab come?
Thanks for the Question. It actually comes through the binomial theorem. Simply in nutshell when a binomial is having power n, then the number of terms will be n+1. (a+b) is having the power 2, therefore no of terms will be 3.
(a+b)²=a²+b²+2ab
Yaha par "=" sign k LHS mei (a+b)² likha hai aur sign k RHS mei (+2ab) hai.. so, jab RHS se LHS ko +2ab ko laya jayega uska sign change ho jata h.... Agar negative hai toh positive mei aur agar positive hota h toh negative mei... Yaha par positive hai joki +2ab... So wo RHS mei -2ab ho jayega... Hence,
(a+b)²-2ab=a²+b²
That is... a²+b²=(a+b)²-2ab...
@@eduforumtutorialseft6038what are u saying sir... I cannot understand?