Evet haklısınız.Maalesef bunu video yayınlandıktan çok sonra fark ettik.Anlatımda olmasa da bazen böyle yazım hataları olabiliyor. Dikkatiniz ve Yapıcı eleştirel katkı için teşekkürler.
İyi bir öğretmen öğrencisine ''Helal olsun öğretmene, bu zor soruyu çözdü'' dedirten değil ''Bu kadar kolay soruyu zaten ben de çözerdim'' dedirtendir. Bu söz çok hoşuma gitti.
Bi ara tahtada bizim fizik hocamız konu anlatıyordu. Kitaptaki ile hocanın anlattığı şey birbirine ters düşünce bizim hoca da kitaptakinin doğru olmadığını söyledi . Ben de hocaya katılıyordum aynı şeklde kitapta hata vardı ama içimden bir şüphe doğdu ve hocaya "peki ya siz yanlış söylüyorsanız ?" diye sordum(Çünkü biliyorum ki hocalar her zaman doğruyu söylemek zorunda değil , her şeyi bilmek zorunda değil onların da hata yapabildiğini defalarca gördüm). Sınıfta tüm gözler bana döndü ve bana hocadan daha iyi mi biliyorsun şeklinde yanıtlar aldım. Hoca da "olabilir,bazen biz de yanlış yapabiliriz sonuçta hatasız kul yoktur" dedi. Çıkışta arkadaşım arkadaşım bana hocaya neden öyle dedin belki onun gururuyla oynamışsındır hocanın kendine bir güveni olsun dedi. Ben de şimdi kara kara düşünüyorum yaptığım yanlış mıydı? Amacım onu üzmek değildi(üzülmedi zaten)🙁. Bazı arkadaşlarım da hava attığımı sanıyor.
@@flaht3964 bu tarz olaylar her insanın başına geliyor sakın kendini kötü hissetme neyi doğru biliyorsan onu yap o şu demiş bu bu demiş gibi şeyleride kafana takma aslında kafana takman senin ahlaklı ve bilinçli birisi olduğunu gösterir kendine iyi bak grş
Yıllardır aradığım tarifi sonunda buldum. Çok teşekkür ederim. Matematikçilere e sayısı nedir diye sorduğumda sürekli bileşik faiz örneğini duymaktan bıkmıştım. Acaba sorun bende mi, ben mi anlayamıyorum diyordum. Sonra farklı bir kanalda yine sorduğum sorunun yorumunda birisi bu kanalı önerdi. Kendisine müteşekkirim. Başarılarınızın devamını dilerim. Matematiği bilmek ayrı anlamak ayrı şeylerdir. Siz bunun kanıtısınız. Herkes bilebilir ama herkes anlayamaz.
Böyle paylaşımların artmasını çok isteriz. Bu şekilde açıklanan matematik dünyada bilimin ilerlemesinin önünü açaçağını düşünüyorum. Paylaşımlarınız için çok teşekkür ediyorum.
Bir zamanlar öğretmenim e sayısının tam olarak ne olduğunu sorduğumda " pi gibi bi sayı işte " demişti. Bu denli değerli bir sayı böyle geçiştiriliyor. Bizde buna eğitim diyoruz.
Ben lisede öğretmenlik yapıyorum bir gün e sayısı nedir diye sormuştu öğrencinin biri. Ben de anlattım. Çocuk hiçbir şey anlamadı kafası da iyice karıştı. Bundan sonra soranlara pi gibi bir sayı işte diyorum. Öğrencinin düzeyi buna uygunsa oturup saatlerce anlatabilirim. Ama düzey düşükse kafa karıştırmaktan başka bir şey değil
7:21 hocam burda bahsettiğiniz tez üniversitelerde anlatılan integral çarpanı metoduna çok benziyor. orda da aynı mantıkla türevi alınmış ifadeyi buluyorduk. bunu onun tersi gibi düşünebilir miyiz.
Bence matematik sınavları gerçekten çok zor olmalı gerçek hayatı esas almalı puanlamada soruyu doğru bilene göre değil. Cevaba yaklaşana düşünce tarzı doğru olana verilmeli diye düşünüyorum.
kafam karıştı biraz, gidiyorum limit ve türevi tekrardan gözden geçirip buraya tekrar gelicem, hocam emeklerinize sağlık böyle kaliteli içerikler bulmak zor. :)
Gerçekten matematiğe olan ilgim aşırı derecede arttı sayenizde Videolarınızı sıkılmadan 2 hafta da bir tekrar tekrar izlerim Kesinlik ile devam etmelisiniz
Bizde gerçekten çok sevindik.Videoları tekrar izlemeniz kesinlikle doğru.Çünkü bazı videolarda bir solukta izlenecek bir içerik yok.Her izlediğinizde başka bir ipucu bulacağınızdan eminiz.Amacımız tam da budur.Güzel yorum katkınız için teşekkürler.
Evet çok doğru Her seferinde hayranlık ile izliyorum Fransada büyüdüm sayılır ve bir teknoloji lisesinde makine mühendisliğine hazırlık bölümünü okuyorum izniniz ile bu eserleri sınıfıma başarabildiğim kadar eksiksiz bir şekilde fransızca sunmak istiyorum
videoyu izlerken kafam karışıyor biraz karışık geliyor. 0.75 hıza alarak izledim. bunu animasyonlarla başka başka görsellerle içeriklerle anlatabilirseniz daha anlaşılır ve daha somut olacaktır. çok teşekkürler.
Bir maddeyi yapıtaşlarından yeniden var etmek demek belirli bir aralıkta o yapıtaşlarını belirli bir düzene göre toplamak yani integral almak demek değil midir? Siz ln(x)'in integralinin x olması gerektiğini mi iddia ediyorsunuz?
Sorduğunuz soru aslında makro Evrenle mikro Evren arasındaki geçişin ipuçlarını taşır. İntegrasyon sadece bir doğru üzerinde dizilimlerin toplamı değil, yön,uzay, vb pek çok özellikleriyle aynı tür şeylerin toplamını gerektirir.Örneğin x boyundaki tek boyutlu çizgilerin dizilim şeklinde integral ile yani uc uca ekleyerek bir 2 boyutlu X^2 alanı oluşturamazsınız.Burada 2 boyutlu dizilim yapmalı 2 katlı integral almalısınız. En küçük yapı taşı Ln(x) in integralinin x 'i vermemesini şöyle de düşünebilirsiniz .En küçük derken şöyle düşünün.Elementleri oluşturan atomda bir insanın en küçük yapı taşıdır diyebiliriz. Bu insan vücudundaki atomları birebir toplayarak insanın özelliklerini temsil eden bir yapı oluşturabiliriz demek değildir.Ancak atomlardan oluşmuş genleri taşıyan hücreleri oluşturduktan sonra bir insan oluşturabilirsiniz.İşte o hücreleri aslında e sayısı tabanının üstel katlarıyla oluşturabiliriz.Yani lnx lerin toplamıyla değil değil e^lnx lerin toplamıyla değişken bir x yapısına ulaşırsınız.Söylediğiniz belirli bir düzene göre toplamı bu şekilde aynı tür nicelikler için (içinde dizilim,yön,cins,uzay vb) değerlendirirseniz sorun kalmaz.Umarız bu anlatım yeterli olmuştur.
Biraz daha canli olsaniz yada arkadaki fon muzigini kapatsaniz daha iyi olabilir sahsimca konusuyorum.. Uykumu getirdiniz hocam saygisizlik olarak algilanmak istemiyorum tesekkur ederim ama uykumu getirdi sesiniz 😁😁😁
Sayı kümeleri açısından e sayısı reel, gerçek bir sayıdır.Reel sayılar kümesi rasyonel ve irrasyonel sayıları kapsar.Konu açılmışken burada izledikleriniz daha önce duymadığınız şeyler olabilir.Örneğin, sıfır noktasında(sıfır değil) ln(o) ın tanımsız veya,ln(1) in gerçekte sıfır olmadığını,fiziksel dünyamızda sabit dediğimiz skalerlerin de değişkenlik gösterebileceğini, kısaca e sayısının bazı üstel katlarında irrasyonel özelliğinden kısmen feragat edebileceğinin nesnel şartlarını ilerleyen videolarda daha detaylı ele alacağız.Bu konuya kısmen değindiğimiz euler özdeşliği videosuna bir göz atmanızı tavsiye ediyorum.Yorum katkınız için teşekkürler
Değişik bir soru sormak isterim.Toplama ve çarpma (temel olanlar tabi) da değişme özelliği olmasına rağmen,neden üslü ifadeler de değişme özelliği yoktur? Aslında daha doğrusu değişme özelliğinin gerçek mantığı nedir Değerlerin yer değiştirmesi gibi basit bir açıklamasının olduğunu sanmıyorum Logaritmanın çıkış kaynağı da bu durumdan kaynaklanıyor sanırım. x+y=y+x ve x.y=y.x eşitlikleri sağlandı fakat x^y≠y^x Bu durumdan dolayı logaritma ortaya çıkmış.Çünkü logaritma üstel fonksiyonların tersi. x, x²,x³ gibi geometrik fonksiyonların tersi de kök işlemcileri. O halde yukarıda ki eşitlik sağlanmadığı için logaritma olmalı.
Değişme özelliğinin mantığını en iyi açıklayan şey rank 2 tensörle matrisin farkını açıklamaktır. Örneğin her matris bir tensör değildir.Ama rankı 2 olan her tensör bir matristir. Bu ikisi arasındaki fark bir niceliği eğer belli işlemlerden ve dönüşümlerden geçirdikten sonra sonuçta tersine olarak yine aynı niceliğe ulaşabiliyorsak bu bir tensördür ve ancak o zaman bu cisimler veya nicelikler üzerine bir cebir oluşturabiliriz.Aksi durumda niceliğin ilk halinden farklı yerlere gidildiğinde cebir çöker.İşte bu değişme özelliğinin ana mantığıdır.
Kast ettiğimiz tez lnx in türevi değil bu türevin "Birim Türev" olmasıdır.Böylece ilerleyen zamanlarda e sayısının üstel katlarıyla yaşadığımız düzlemdeki hemen her değişkenin yapı taşının temsil edilebileceğini göreceğiz. Bu kavramı (tezi)kullanarak 0. boyut civarını, kısaca sabit dediğimiz kavramlarında bir yapı taşı olabileceğini inceleyeceğiz.Nasıl ki ln(-1)= i.pi gibi kompleks bir değeri olduğunu biliyorsak, ln(1)'inde gerçekte sıfıra eşit olmadığını göreceğiz.Bu 0. boyut çevresindeki olaylar aslında doğrudan Mikro Evren ve Kuantum Mekaniğinin işleyişi hakkında da bize ipuçları verecek.Yorum katkınız için teşekkürler.
Ne yazık ki mevcut sistemde öğrencilerin gerçek matematik algısı daha orta öğretimde köreltiliyor.Önerebileceğim hiçbir yerli ve yabancı kitap yok maalesef.Bu tür bilgiler Dünyada sadece belli bir elit kesime sunulup sır gibi saklanıyor sanki. Matematiksel kavramlar birilerinin yarattığı soyut şeyler değil; zaten doğada var olanın birileri tarafından keşfedilmesidir.Kısaca hayatın içindeki somut olgulardır.Doğada her kavramın bir karşılığı ve anafikri vardır.Öğrenmeye çalıştığınız her konunun doğadaki yansımasını keşfetmeye çalışın.Bir anafikir oluşturun. Örneğin green teoreminin anafikri "kapalı bir bölge içinde ne varsa bölge sınırlarına yansıyanda odur" diye özetlenebilir.Tıpkı insanın içindekinin yüzüne yansıması gibi. Diverjans teoremi ise "kapalı bir bölgeden ne kadar birşey dışarı kaçıyorsa veya giriyorsa bölge içindeki o şeyin miktarında azalma veya artma o kadardır gibi. Veya fizikte yatay atışta bir cisim ne kadar süre havada kalırsa o yatayda kadar yol alır gibi. Karmaşık notasyonlara terimlere takılıp kavramın içinde kaybolmayın kavrama dışardan bakın.Ne işe yarayacağını düşünün. Zor gibi görünen kavramların ana fikirlerini bulun; gerisi gelecektir.Çünkü o kavramları keşfedenler de bu mentalite ile keşfettiler.Yeniden yaratmadılar sadece var olan bir şeyi keşfettiler.Tavsiyem Bizi İzlemeniz.Kolay gelsin.Yorum katkınız için tşk.
Bu söylem bizim yaşam düzlemimize göre söylenmiş olup her zaman geçerli olmayabilir.Bunu söylerken özellikle Taylor Serisi'ni kastetmedik ama muhtemelen Taylor'ın ilham kaynağı da budur. Taylor Serisi'ni ilerde bugüne kadar ele alınmamış bir şekilde analitik ve bilinenden çok farklı bir bakış açısıyla incelerken konuyu daha detaylı ele alacağız.
@@NeandertalAcademyNA devam eden videolar tensor analizinin devamı şeklinde mi olacak yoksa parça parça bu videodaki gibi sıradışı bilgilerden olacak?tesekkurler
Sayın alper sev, tensör konusu şimdilik bitti.Aynen dediğiniz gibi olacak.Ama sıra dışı yerine daha önce anlatılmadığı kadar kavramsal anlatımlar diyelim.
Kelime anlamı olarak soruyorsanız; internetten kolayca bulabilirsiniz. Eğer amacımızı kast ediyorsanız; İnsanlığın tarih boyunca ürettiği ortak malı olan Bilgiyi, ona el koyup halkla paylaşmayanların tekelinden alıp, özgürleştirmek ve tüm topluma yayma adına küçükte olsa bir kıvılcım olabilmektir.
Önce problemi çözmek için formül ürettiniz sonra o formülü çözmek için bir formül daha ve onuda çözmek için bir formül daha , sonuç ne peki herşeyi çorba ettiniz çözülemez ettiniz Her bütün bölünürken eşit iki parçaya ayrılmak zorundadır de gitsin
Videoyu bir kez daha dikkatli izlemenizi tavsiye ediyoruz."Her bütün bölünürken iki eşit parçaya ayrılır" gibi bir söylemimiz yok.Kastınız e^x in türevi ise burada bölünme yok. Bir şeyin kendi kadar artması var.Yani bölünme değil birebir kendini kopyalama gibi düşünün.
Öncelikle çok teşekkür ederim ama sormak istedim hocam. ln(f(x))' = 1/f(x) . f' (x) f(x). ln(f(x))' = f(x). 1/f(x). f(x)' =f(x)' Bu Neden sizin teziniz olsun ki?
Tez dediğimiz durum bu tabiki herkes tarafından bilinen eşitlikteki Ln(x) in "herhangi bir x niceliğinin yapı taşı" olması tanımıdır..Bu yapı taşı kabaca, 0. boyut dediğimiz boyutunda altındaki veya cıvarındaki nicelikler hakkında fikir yürütebilmemizi, bir takım hesaplar yapabilmemizi sağlar.Bu durum kuantum mekaniği için önemlidir.Yorum katkınız için teşekkürler.
Doğada anlık değişebilen her şeyin değişim oranı ve bu niceliklerin anlık ve sınır değerleri e sayısının üstel katlarıyla gösterilebilir.Yani bir insanın duyma aralığından tutun,bir meyvenin büyümesinden çürümesine kadar,bir radyoaktif maddenin bozunumundan,bir roketin ivmelenmesine kadar aklınıza gelen her nicelikteki değişim ve anlık durum e sayısının bir üstel değerine karşılık gelir. Aslında sayı demek doğruda değil, "3. boyutta doğanın değişim tabanıdır" demek daha doğru.
Sayın Mesut Baba, gülünecek bir durum yok.Çünkü şu anda ülkemizde Doçent ,Prof. olmuş ama hala "e" sayısını iki virgül bilmem kaç diye devam eden bir irrasyonel sayı olarak bilenler var.Bulunması için onlarca yol var.Çünkü "e" sayısı bir çok matematiksel kavramın içinde açıkça sırıtır.Bu sebeple nasıl bulunduğundan ziyade ne olduğunu bilmek daha önemli.Videoda dediğimiz gibi "e" sayısı doğanın sayısıdır.Doğada belli bir parametre ile (ki en genel parametre zamandır) değişen her değişim "e" sayısının üstel katlarıyla temsil edilebilir.Yani radyoaktif bozunan bir madde,büyüyen bir ağaç,çürüyen bir yaprak,bankada şişen bir hesap,Yanarak tükenen bir roket yakıtı kısaca aklınıza ne gelirse buralardaki değişimlerin tümü "e" üzeri bir şeyle temsil edilebilir.Bu bir başlangıç videosu idi.İlerde daha detaylı örnekli videolar gelecek.
Neandertal Academy NA Hocam lütfen yanıtlar mısınız ? Buralardaki değişimlerin tümü e üzeri bir şey ile gösterilir demişsiniz.e üzeri bir şey ile gösterilebilmesi için değişimin o andaki miktara bağlı olması gerekmiyor mu ? Yani mesela büyüyen bir ağaçta o ağacın büyümesi o anki büyüklüğüne muhtemelen bağlı değildir .
Hocam 50 .saniyede ekranda 10 üzeri 8 eşittir 1 milyon çarpı 10 ifadesi var. 10 ^8= 100 milyon, 1milyon x10 =10 milyon, sağ tarafta bir sıfır eksik.Paylaşım için teşekkkürler.
Evet haklısınız.Maalesef bunu video yayınlandıktan çok sonra fark ettik.Anlatımda olmasa da bazen böyle yazım hataları olabiliyor. Dikkatiniz ve Yapıcı eleştirel katkı için teşekkürler.
e sayısı nereden gelir?
th-cam.com/video/FwKb0YR-oaM/w-d-xo.html
İyi bir öğretmen öğrencisine ''Helal olsun öğretmene, bu zor soruyu çözdü'' dedirten değil ''Bu kadar kolay soruyu zaten ben de çözerdim'' dedirtendir. Bu söz çok hoşuma gitti.
Bi ara tahtada bizim fizik hocamız konu anlatıyordu. Kitaptaki ile hocanın anlattığı şey birbirine ters düşünce bizim hoca da kitaptakinin doğru olmadığını söyledi . Ben de hocaya katılıyordum aynı şeklde kitapta hata vardı ama içimden bir şüphe doğdu ve hocaya "peki ya siz yanlış söylüyorsanız ?" diye sordum(Çünkü biliyorum ki hocalar her zaman doğruyu söylemek zorunda değil , her şeyi bilmek zorunda değil onların da hata yapabildiğini defalarca gördüm). Sınıfta tüm gözler bana döndü ve bana hocadan daha iyi mi biliyorsun şeklinde yanıtlar aldım. Hoca da "olabilir,bazen biz de yanlış yapabiliriz sonuçta hatasız kul yoktur" dedi.
Çıkışta arkadaşım arkadaşım bana hocaya neden öyle dedin belki onun gururuyla oynamışsındır hocanın kendine bir güveni olsun dedi. Ben de şimdi kara kara düşünüyorum yaptığım yanlış mıydı? Amacım onu üzmek değildi(üzülmedi zaten)🙁. Bazı arkadaşlarım da hava attığımı sanıyor.
@@flaht3964 Her söyleneni takma.
@@flaht3964 bu tarz olaylar her insanın başına geliyor sakın kendini kötü hissetme neyi doğru biliyorsan onu yap o şu demiş bu bu demiş gibi şeyleride kafana takma aslında kafana takman senin ahlaklı ve bilinçli birisi olduğunu gösterir kendine iyi bak grş
Yıllardır aradığım tarifi sonunda buldum. Çok teşekkür ederim. Matematikçilere e sayısı nedir diye sorduğumda sürekli bileşik faiz örneğini duymaktan bıkmıştım. Acaba sorun bende mi, ben mi anlayamıyorum diyordum. Sonra farklı bir kanalda yine sorduğum sorunun yorumunda birisi bu kanalı önerdi. Kendisine müteşekkirim. Başarılarınızın devamını dilerim. Matematiği bilmek ayrı anlamak ayrı şeylerdir. Siz bunun kanıtısınız. Herkes bilebilir ama herkes anlayamaz.
Böyle paylaşımların artmasını çok isteriz. Bu şekilde açıklanan matematik dünyada bilimin ilerlemesinin önünü açaçağını düşünüyorum. Paylaşımlarınız için çok teşekkür ediyorum.
Hocam ellerinize salık çok iyi anlatım.
Bir zamanlar öğretmenim e sayısının tam olarak ne olduğunu sorduğumda " pi gibi bi sayı işte " demişti. Bu denli değerli bir sayı böyle geçiştiriliyor. Bizde buna eğitim diyoruz.
pi deçok değerli kardeş.
bana da üniversitede öğrenirsin demişti, üniversitede de lisede öğrenmedin mi dediler.
Pi yi sorsan onuda bilmez
Ben lisede öğretmenlik yapıyorum bir gün e sayısı nedir diye sormuştu öğrencinin biri. Ben de anlattım. Çocuk hiçbir şey anlamadı kafası da iyice karıştı. Bundan sonra soranlara pi gibi bir sayı işte diyorum. Öğrencinin düzeyi buna uygunsa oturup saatlerce anlatabilirim. Ama düzey düşükse kafa karıştırmaktan başka bir şey değil
@@mertcanikizler3137 ona da e gibi bi sayı işte der :D
emeğiniz için çok teşekkürler.... tüm temel bilimlerde, tüm derslerde böyle anlatımlarla karşılaşmak dileği ile...
7:21 hocam burda bahsettiğiniz tez üniversitelerde anlatılan integral çarpanı metoduna çok benziyor. orda da aynı mantıkla türevi alınmış ifadeyi buluyorduk. bunu onun tersi gibi düşünebilir miyiz.
Tam da okulda logaritmayı işlerken çok iyi geldi video. Yine harikasınız, çok teşekkürler.
Bilimsel Filozof Cemal Yıldırım'ın bahsettiği ilk insan neandartellerin evrimi için açılmış bir kanal. Adı bile ayrı bir mantıklı ve matematiksel.
Müthiş anlatım, harika bakış açıları sunuyor.
Çok guzel paylaşim, tesekkur ederim
Çok değerli kanal
Çok teşekkürler paylaşım icin
Bence matematik sınavları gerçekten çok zor olmalı gerçek hayatı esas almalı puanlamada soruyu doğru bilene göre değil.
Cevaba yaklaşana düşünce tarzı doğru olana verilmeli diye düşünüyorum.
Cox tesekkurler hocam vidyolara devam edin lutfen gercekten birseyler oyrendiyimi hiss ediyorum
Fişi çektim yandı beyin ama çok keyifliydi teşekkürler...
kafam karıştı biraz, gidiyorum limit ve türevi tekrardan gözden geçirip buraya tekrar gelicem, hocam emeklerinize sağlık böyle kaliteli içerikler bulmak zor. :)
Hocam arkaya müzik koymasınız daha iyi anlaşılır söyledikleriniz
Bu kanalı bugün keşfettim ve çok mutluyum.
Bu videoyu anlamak Hayatı anlamlandırmak
Gerçekten matematiğe olan ilgim aşırı derecede arttı sayenizde
Videolarınızı sıkılmadan 2 hafta da bir tekrar tekrar izlerim
Kesinlik ile devam etmelisiniz
Bizde gerçekten çok sevindik.Videoları tekrar izlemeniz kesinlikle doğru.Çünkü bazı videolarda bir solukta izlenecek bir içerik yok.Her izlediğinizde başka bir ipucu bulacağınızdan eminiz.Amacımız tam da budur.Güzel yorum katkınız için teşekkürler.
Evet çok doğru
Her seferinde hayranlık ile izliyorum
Fransada büyüdüm sayılır ve bir teknoloji lisesinde makine mühendisliğine hazırlık bölümünü okuyorum
izniniz ile bu eserleri sınıfıma başarabildiğim kadar eksiksiz bir şekilde fransızca sunmak istiyorum
@@ritmerecords7675 seviniriz.Başarılar.
Teşekkürler.
kelimeler arasında doğal boşluk bırakılırsa daha iyi olur. sanki boşluklar kaldırılmış gibi. kelimeler çok hızlı akıyor. içerik güzel
BEN 1.5 X TE İZLİYORUM
teşekkür ederiz. şu hocalarda izlese sizi
Merhabalar hocam e üzeri x in türevini ispatlamaya çalışırken sizin videonuzla. Lisans eğitimi için önerebileceğiniz bir kaynak var mı?
Damn ,your content is good ,but i couldnt understand ur language .......i wish u could have the subtitles....
İt will be the shortest time.Thanks.
Learn Turkish .
It's Turkish. And his content is fascinating
@Sir Faraday ben onu hangi kafayla yazdım bilmiyorum :D ama sağlam saçmalamışım
Çok güzel
videoyu izlerken kafam karışıyor biraz karışık geliyor. 0.75 hıza alarak izledim. bunu animasyonlarla başka başka görsellerle içeriklerle anlatabilirseniz daha anlaşılır ve daha somut olacaktır. çok teşekkürler.
💯💯💯💯💯💯👏👏👏👏👏👏
emeğinize sağlık...
Abi sana helal olsun diyorum başka hiçbir şey demiyorum
Vala 50 kere 50 yerden izlesemde kafada canlandramyom şu sayının anlamını
TH-cam için iyi içerik Teşekkürler..
Bir maddeyi yapıtaşlarından yeniden var etmek demek belirli bir aralıkta o yapıtaşlarını belirli bir düzene göre toplamak yani integral almak demek değil midir? Siz ln(x)'in integralinin x olması gerektiğini mi iddia ediyorsunuz?
Sorduğunuz soru aslında makro Evrenle mikro Evren arasındaki geçişin ipuçlarını taşır. İntegrasyon sadece bir doğru üzerinde dizilimlerin toplamı değil, yön,uzay, vb pek çok özellikleriyle aynı tür şeylerin toplamını gerektirir.Örneğin x boyundaki tek boyutlu çizgilerin dizilim şeklinde integral ile yani uc uca ekleyerek bir 2 boyutlu X^2 alanı oluşturamazsınız.Burada 2 boyutlu dizilim yapmalı 2 katlı integral almalısınız. En küçük yapı taşı Ln(x) in integralinin x 'i vermemesini şöyle de düşünebilirsiniz .En küçük derken şöyle düşünün.Elementleri oluşturan atomda bir insanın en küçük yapı taşıdır diyebiliriz. Bu insan vücudundaki atomları birebir toplayarak insanın özelliklerini temsil eden bir yapı oluşturabiliriz demek değildir.Ancak atomlardan oluşmuş genleri taşıyan hücreleri oluşturduktan sonra bir insan oluşturabilirsiniz.İşte o hücreleri aslında e sayısı tabanının üstel katlarıyla oluşturabiliriz.Yani lnx lerin toplamıyla değil değil e^lnx lerin toplamıyla değişken bir x yapısına ulaşırsınız.Söylediğiniz belirli bir düzene göre toplamı bu şekilde aynı tür nicelikler için (içinde dizilim,yön,cins,uzay vb) değerlendirirseniz sorun kalmaz.Umarız bu anlatım yeterli olmuştur.
sevgiler hocam
Biraz daha canli olsaniz yada arkadaki fon muzigini kapatsaniz daha iyi olabilir sahsimca konusuyorum.. Uykumu getirdiniz hocam saygisizlik olarak algilanmak istemiyorum tesekkur ederim ama uykumu getirdi sesiniz 😁😁😁
1:55 de rasyoneldir derken, e sayisinin bir rasyonel sayi olduğunu mu kastediyorsunuz ? Bence bir irrasyonel sayiya benziyor.
Sayı kümeleri açısından e sayısı reel, gerçek bir sayıdır.Reel sayılar kümesi rasyonel ve irrasyonel sayıları kapsar.Konu açılmışken burada izledikleriniz daha önce duymadığınız şeyler olabilir.Örneğin, sıfır noktasında(sıfır değil) ln(o) ın tanımsız veya,ln(1) in gerçekte sıfır olmadığını,fiziksel dünyamızda sabit dediğimiz skalerlerin de değişkenlik gösterebileceğini, kısaca e sayısının bazı üstel katlarında irrasyonel özelliğinden kısmen feragat edebileceğinin nesnel şartlarını ilerleyen videolarda daha detaylı ele alacağız.Bu konuya kısmen değindiğimiz euler özdeşliği videosuna bir göz atmanızı tavsiye ediyorum.Yorum katkınız için teşekkürler
Değişik bir soru sormak isterim.Toplama ve çarpma (temel olanlar tabi) da değişme özelliği olmasına rağmen,neden üslü ifadeler de değişme özelliği yoktur?
Aslında daha doğrusu değişme özelliğinin gerçek mantığı nedir
Değerlerin yer değiştirmesi gibi basit bir açıklamasının olduğunu sanmıyorum
Logaritmanın çıkış kaynağı da bu durumdan kaynaklanıyor sanırım.
x+y=y+x ve x.y=y.x eşitlikleri sağlandı fakat
x^y≠y^x
Bu durumdan dolayı logaritma ortaya çıkmış.Çünkü logaritma üstel fonksiyonların tersi.
x, x²,x³ gibi geometrik fonksiyonların tersi de kök işlemcileri.
O halde yukarıda ki eşitlik sağlanmadığı için logaritma olmalı.
Değişme özelliğinin mantığını en iyi açıklayan şey rank 2 tensörle matrisin farkını açıklamaktır. Örneğin her matris bir tensör değildir.Ama rankı 2 olan her tensör bir matristir. Bu ikisi arasındaki fark bir niceliği eğer belli işlemlerden ve dönüşümlerden geçirdikten sonra sonuçta tersine olarak yine aynı niceliğe ulaşabiliyorsak bu bir tensördür ve ancak o zaman bu cisimler veya nicelikler üzerine bir cebir oluşturabiliriz.Aksi durumda niceliğin ilk halinden farklı yerlere gidildiğinde cebir çöker.İşte bu değişme özelliğinin ana mantığıdır.
Gerçekten harika.
Neden lnx x yapısının en küçük yapı taşıdır ve buradaki lnx e'in her hangi bir kuvvetidir bu kuvvet neden x'in yapı taşı olsun?
"e" sayısı doğal logaritmadır. Doğadaki her değişken (burada x) "e" sayısının üstel katlarıyla değişir ve temsil edilebilir.
Süper.
içerik harika, biraz hızlıca anlatılmış anlaşılması zor hale gelmiş
Şunu anlayamadım zaten In nın turev kuralı ( içinin türevi)/içi demek yani bu bi tez değil ki dünya çapında kabul görmüş kuram degil mi
Kast ettiğimiz tez lnx in türevi değil bu türevin "Birim Türev" olmasıdır.Böylece ilerleyen zamanlarda e sayısının üstel katlarıyla yaşadığımız düzlemdeki hemen her değişkenin yapı taşının temsil edilebileceğini göreceğiz. Bu kavramı (tezi)kullanarak 0. boyut civarını, kısaca sabit dediğimiz kavramlarında bir yapı taşı olabileceğini inceleyeceğiz.Nasıl ki ln(-1)= i.pi gibi kompleks bir değeri olduğunu biliyorsak, ln(1)'inde gerçekte sıfıra eşit olmadığını göreceğiz.Bu 0. boyut çevresindeki olaylar aslında doğrudan Mikro Evren ve Kuantum Mekaniğinin işleyişi hakkında da bize ipuçları verecek.Yorum katkınız için teşekkürler.
Teşekkür ederim.
Hocam lisans matematigine lise matematigi bittikden sonra hangi kitapla calisilabilir ve bireysel calismayla anlasilabilirmi.
Ne yazık ki mevcut sistemde öğrencilerin gerçek matematik algısı daha orta öğretimde köreltiliyor.Önerebileceğim hiçbir yerli ve yabancı kitap yok maalesef.Bu tür bilgiler Dünyada sadece belli bir elit kesime sunulup sır gibi saklanıyor sanki.
Matematiksel kavramlar birilerinin yarattığı soyut şeyler değil; zaten doğada var olanın birileri tarafından keşfedilmesidir.Kısaca hayatın içindeki somut olgulardır.Doğada her kavramın bir karşılığı ve anafikri vardır.Öğrenmeye çalıştığınız her konunun doğadaki yansımasını keşfetmeye çalışın.Bir anafikir oluşturun.
Örneğin green teoreminin anafikri "kapalı bir bölge içinde ne varsa bölge sınırlarına yansıyanda odur" diye özetlenebilir.Tıpkı insanın içindekinin yüzüne yansıması gibi.
Diverjans teoremi ise "kapalı bir bölgeden ne kadar birşey dışarı kaçıyorsa veya giriyorsa bölge içindeki o şeyin miktarında azalma veya artma o kadardır gibi.
Veya fizikte yatay atışta bir cisim ne kadar süre havada kalırsa o yatayda kadar yol alır gibi.
Karmaşık notasyonlara terimlere takılıp kavramın içinde kaybolmayın kavrama dışardan bakın.Ne işe yarayacağını düşünün. Zor gibi görünen kavramların ana fikirlerini bulun; gerisi gelecektir.Çünkü o kavramları keşfedenler de bu mentalite ile keşfettiler.Yeniden yaratmadılar sadece var olan bir şeyi keşfettiler.Tavsiyem Bizi İzlemeniz.Kolay gelsin.Yorum katkınız için tşk.
Neandertal Academy NA hocam yorumunuz icin tesekkurler. Bakis acimiza katmis oldugunuz incelikten.
Calculus Thomas iyidir
Ali Nesin in Pisagor match home daki videolarını izlemenizi tavsiye ederim
anlamadığımdan üzülüyorum ama anlayana kadar devam
2:26 dan sonra beynim yandı dostlar
Burada her fonksiyonun polinom fonksiyonun yansıması derken taylor serisi açılımını mı kastediyorsunuz?
Bu söylem bizim yaşam düzlemimize göre söylenmiş olup her zaman geçerli olmayabilir.Bunu söylerken özellikle Taylor Serisi'ni kastetmedik ama muhtemelen Taylor'ın ilham kaynağı da budur. Taylor Serisi'ni ilerde bugüne kadar ele alınmamış bir şekilde analitik ve bilinenden çok farklı bir bakış açısıyla incelerken konuyu daha detaylı ele alacağız.
@@NeandertalAcademyNA devam eden videolar tensor analizinin devamı şeklinde mi olacak yoksa parça parça bu videodaki gibi sıradışı bilgilerden olacak?tesekkurler
Sayın alper sev, tensör konusu şimdilik bitti.Aynen dediğiniz gibi olacak.Ama sıra dışı yerine daha önce anlatılmadığı kadar kavramsal anlatımlar diyelim.
Çokkkk teşekkürler
Kanalın ismi neden neandertal? Ne anlama geliyor?
Kelime anlamı olarak soruyorsanız; internetten kolayca bulabilirsiniz.
Eğer amacımızı kast ediyorsanız; İnsanlığın tarih boyunca ürettiği ortak malı olan Bilgiyi, ona el koyup halkla paylaşmayanların tekelinden alıp, özgürleştirmek ve tüm topluma yayma adına küçükte olsa bir kıvılcım olabilmektir.
Lütfen bu amacınızdan şaşmayın takip ediyorum 👍👍Başarılar dilerim👍👍
@@NeandertalAcademyNA Çok güzel amaç. Hocam indirgenemez karmaşıklık hakkında video yapar mısınız?
helalsin
Önce problemi çözmek için formül ürettiniz sonra o formülü çözmek için bir formül daha ve onuda çözmek için bir formül daha , sonuç ne peki herşeyi çorba ettiniz çözülemez ettiniz
Her bütün bölünürken eşit iki parçaya ayrılmak zorundadır de gitsin
Videoyu bir kez daha dikkatli izlemenizi tavsiye ediyoruz."Her bütün bölünürken iki eşit parçaya ayrılır" gibi bir söylemimiz yok.Kastınız e^x in türevi ise burada bölünme yok. Bir şeyin kendi kadar artması var.Yani bölünme değil birebir kendini kopyalama gibi düşünün.
Öncelikle çok teşekkür ederim ama sormak istedim hocam.
ln(f(x))' = 1/f(x) . f' (x)
f(x). ln(f(x))' = f(x). 1/f(x). f(x)'
=f(x)'
Bu Neden sizin teziniz olsun ki?
Tez dediğimiz durum bu tabiki herkes tarafından bilinen eşitlikteki Ln(x) in "herhangi bir x niceliğinin yapı taşı" olması tanımıdır..Bu yapı taşı kabaca, 0. boyut dediğimiz boyutunda altındaki veya cıvarındaki nicelikler hakkında fikir yürütebilmemizi, bir takım hesaplar yapabilmemizi sağlar.Bu durum kuantum mekaniği için önemlidir.Yorum katkınız için teşekkürler.
Değer verdiğiniz için teşekkür ederim 😊
1:57 e sayısı rasyoneldir. denilmiş. HAYIR e sayısı İRRASYONELDİR.
Biraz dikkat. Rasyonel değil, "Reel ve İrrasyoneldir" deniyor.Reel sayılar hem rasyonel hemde irrasyonel sayıları kapsar.
tekrar dinledim.pardon haklısınız. irrasyonel demişsiniz. uyarınız için sağolun. ir hecesini müzikden dolayı tam olarak duyamamışım.)
bunu da iki defa izledim ve e sayısının hala somut olarak ne olduğunu anlamış değilim
Doğada anlık değişebilen her şeyin değişim oranı ve bu niceliklerin anlık ve sınır değerleri e sayısının üstel katlarıyla gösterilebilir.Yani bir insanın duyma aralığından tutun,bir meyvenin büyümesinden çürümesine kadar,bir radyoaktif maddenin bozunumundan,bir roketin ivmelenmesine kadar aklınıza gelen her nicelikteki değişim ve anlık durum e sayısının bir üstel değerine karşılık gelir. Aslında sayı demek doğruda değil, "3. boyutta doğanın değişim tabanıdır" demek daha doğru.
Sayın Robin "e" sayısının örneklerle daha detaylı anlatıldığı bir video ilerde yayınlanacak.
Hiçbirşey anlamadım..Bir de anlatıcı neden o kadar melankolik bir ses tonu kullanıyor..😊
beynim yandı laan.
We need traduction
We will do it after a while.
Hocam e sayısı irrasyonel ama
Videoyu dikkatli izlerseniz Reel ve İrrasyoneldir deniyor.
Baştan söyleyeyim ; bana Gülecek olanlar, açıklama yaparak gülsünler :)
sorum şu : e sayısı nasıl bulunuyor ki :?
Sayın Mesut Baba, gülünecek bir durum yok.Çünkü şu anda ülkemizde Doçent ,Prof. olmuş ama hala "e" sayısını iki virgül bilmem kaç diye devam eden bir irrasyonel sayı olarak bilenler var.Bulunması için onlarca yol var.Çünkü "e" sayısı bir çok matematiksel kavramın içinde açıkça sırıtır.Bu sebeple nasıl bulunduğundan ziyade ne olduğunu bilmek daha önemli.Videoda dediğimiz gibi "e" sayısı doğanın sayısıdır.Doğada belli bir parametre ile (ki en genel parametre zamandır) değişen her değişim "e" sayısının üstel katlarıyla temsil edilebilir.Yani radyoaktif bozunan bir madde,büyüyen bir ağaç,çürüyen bir yaprak,bankada şişen bir hesap,Yanarak tükenen bir roket yakıtı kısaca aklınıza ne gelirse buralardaki değişimlerin tümü "e" üzeri bir şeyle temsil edilebilir.Bu bir başlangıç videosu idi.İlerde daha detaylı örnekli videolar gelecek.
@@NeandertalAcademyNA Merakla bekliyoruz
Neandertal Academy NA Hocam lütfen yanıtlar mısınız ? Buralardaki değişimlerin tümü e üzeri bir şey ile gösterilir demişsiniz.e üzeri bir şey ile gösterilebilmesi için değişimin o andaki miktara bağlı olması gerekmiyor mu ? Yani mesela büyüyen bir ağaçta o ağacın büyümesi o anki büyüklüğüne muhtemelen bağlı değildir .
@@omeraliylmaz5369 Başlangıç sabitleri de hesaba katılabiliyor.
Seri konulurken konuşma hakimiyetinizi kaybediyorsunuz ve nefesssiz kalıyorsunuz.
Bir 6.sınıf olarak konuşuyorum.
*e sayımıymış lan ben harf sanıyodum :D*
sözelci mi oldun şuan merakımdan soruyorum :))
SESLENDİRME ROBOTİK OLMASA, TÜRKÇE VURGU YAPMASINI BİLEN BİRİ YAPSA ÇOK DAHA İYİ OLURDU
Matematik gerçek hayatta pek bir işe yaramaz asıl bilim fen bilimleridir ve hayatin bütünü fiziktir.
Matematiksiz fizik nasıl yapacaksan artık bilemiyorum!!!
Aga be ağır sıvazlamışsın.
@@mumineaslan1303 gercek hayat diyorum dikkat
@@mumineaslan1303 iki uc bakkal hesabini matematige falan uyarlama. Turevi integrali fonksiyonu bir ise yaramaz gercek hayatta
@@kafkaskartal6138 Tamam siz öyle diyorsanız öyledir. Matematik ve fen profesörü olduğunuz için ne nerede kullanılıyor sizden iyi kim bilir(!)