Introduction to Topology: Made Easy

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 พ.ย. 2024

ความคิดเห็น • 116

  • @ngm_4092
    @ngm_4092 4 ปีที่แล้ว +111

    you made me understand topology in 22 seconds. I think I heard the actual click in my mind

  • @HeyItsKora
    @HeyItsKora 3 ปีที่แล้ว +44

    27 dislikes are from flat earthers, because you casually proved the shape of the globe just using topology 😂

    • @zapazap
      @zapazap ปีที่แล้ว +2

      That the earth is a globe us an unproved lemma. Work harder.

    • @TD-iy8us
      @TD-iy8us ปีที่แล้ว

      ​@@zapazap what??? The earth being a globe is proven

    • @zapazap
      @zapazap ปีที่แล้ว +2

      @@TD-iy8us The commenter presented the claim without proof.

    • @guidinglight1lul
      @guidinglight1lul ปีที่แล้ว

      @@zapazapGreenland has a special property, (how?)
      go to space oh wait you cant

    • @zapazap
      @zapazap ปีที่แล้ว +2

      @@guidinglight1lul If you know that can't go to space, then why did you advise me to go there?
      Are you engaging in good faith sir?

  • @dennnisjoshy2369
    @dennnisjoshy2369 4 ปีที่แล้ว +3

    This is the first video of topology I ever watched. Thank you for sparking my interest.

  • @mathboy8188
    @mathboy8188 ปีที่แล้ว +3

    The precise claim is that every *_closed_* surface (compact connected no-boundary 2-manifold) is determined by its Euler characteristic *_and_* whether it's orientable or not.

  • @farnaznouraei9000
    @farnaznouraei9000 4 ปีที่แล้ว +2

    Finally! A video with simple explanation on the concept of genus!

    • @martyguild
      @martyguild 4 ปีที่แล้ว +1

      they... didn't even say the word genus

    • @kuhinde
      @kuhinde 2 ปีที่แล้ว

      @@martyguild LMAOO

  • @AbuSayed-er9vs
    @AbuSayed-er9vs 6 ปีที่แล้ว +35

    Awesome video!!! Even I can't tell in words how helpful it is for me.Please make videos about topology of glueing,cutting etc.

  • @sem5776
    @sem5776 6 ปีที่แล้ว +18

    This is interesting, it makes me wanna learn topology

  • @matthewbain9359
    @matthewbain9359 7 ปีที่แล้ว +12

    Wonderfully explained. Thanks a lot!

  • @sudeshnasamanta7133
    @sudeshnasamanta7133 2 ปีที่แล้ว

    Mind-blowing! Quality over quantity (5:00 min)!

  • @benjaminbuzali9254
    @benjaminbuzali9254 2 หลายเดือนก่อน

    And logical-mathematical psychoanalysis. started from lacan analytic discourse. Thanks for the video!!!!!!

  • @matheusreidopedaco
    @matheusreidopedaco ปีที่แล้ว

    My college needs you as a teacher!

  • @MrFischvogel
    @MrFischvogel 3 ปีที่แล้ว +2

    Excellent visual demonstration of useful applications!
    Make more, more, more !! =)

  • @xenmaster0
    @xenmaster0 3 ปีที่แล้ว +4

    This is a fabulous video. Incredibly clear and helpful. Bravo!

  • @levimungai1846
    @levimungai1846 ปีที่แล้ว

    This explanation provides very good insight. A very good video.

  • @user-kl5gm8nm6r
    @user-kl5gm8nm6r 4 ปีที่แล้ว +5

    I am PHD in Topology, and this is the simplest explanation for laymen

    • @zapazap
      @zapazap ปีที่แล้ว

      Sir: on your opinion, is 'rubber sheet geometry' a good description of general topology, whose spaces sometimes are not even T1?
      I am suspicious of the beauty of general topology being shortchanged.

  • @dhruvvhatkar6037
    @dhruvvhatkar6037 3 ปีที่แล้ว

    clear and crisp intro to the concept.....

  • @joyjeetdas6821
    @joyjeetdas6821 2 ปีที่แล้ว

    easiest explanation found till now great

  • @huypham0081
    @huypham0081 20 วันที่ผ่านมา

    thanks for your simple explaination

  • @joshuaharper7537
    @joshuaharper7537 3 ปีที่แล้ว

    This video has saved my masters

  • @jorgeriveramx
    @jorgeriveramx 6 ปีที่แล้ว

    Very insteresting subject. Excellent explanation. Thank you so much!

  • @devanteaspon6450
    @devanteaspon6450 8 ปีที่แล้ว +6

    Hey nice video! I really enjoyed your intuitive explanation. You made it real interesting and good luck bro!!

  • @charumathib9662
    @charumathib9662 5 ปีที่แล้ว +1

    super .....create more videos like this....with a picturized explanation .....one can easily understand .....next part pls😊 😊

  • @zapazap
    @zapazap ปีที่แล้ว +1

    Topology does not apply only to manifolds in R^n.
    Do these 'stretching' analogies apply to non T1 spaces? I ask because I am suspicious of 'rubber sheet geometry' being used as a description of topology per se.

  • @chadliampearcy
    @chadliampearcy 5 ปีที่แล้ว +6

    Study Group theory and real/complex analysis before touching topology. The concepts in algebra and analysis naturally lead to topology

    • @zapazap
      @zapazap ปีที่แล้ว

      Group theory is important only to algebraic topology, not general topology. And the latter does not even require real analysis. (Though an understanding of metric spaces can certainly motivate.)

  • @zaidsserubogo261
    @zaidsserubogo261 5 ปีที่แล้ว +1

    I like the concept of deformation in telling a lot about what the future is preparing for us to discover

  • @petelok9969
    @petelok9969 5 ปีที่แล้ว +1

    Hi Jack great video. Any chance of and introduction to manifolds? Peter

  • @simpytarika7836
    @simpytarika7836 6 ปีที่แล้ว

    Awsm..am speechless ..cant use wordz for prase on your presentation on topology

  • @henrytan5707
    @henrytan5707 2 ปีที่แล้ว

    Wah! I think I got the idea, thanks a lot, much better than reading a book!

  • @NonTwinBrothers
    @NonTwinBrothers 3 ปีที่แล้ว +1

    This is interesting, it makes me wanna learn clarinet

  • @antoniofirenze
    @antoniofirenze 2 ปีที่แล้ว +1

    Jack Li's videos: Music, music, music, music.. TOPOLOGY!!

  • @brandonzang8393
    @brandonzang8393 7 ปีที่แล้ว

    Thanks for the awesome video! Now when my friends talk intuitively about topology, I know what to say.

  • @rajdeepghosh7368
    @rajdeepghosh7368 4 ปีที่แล้ว +7

    Hey small issue with the video... I think. Continuous deformation l is not a homeomorphism.. It's called a homotopy. A homeomorphism is just a bicontinuous bijection and in general is a much much less demanding map. For example, a trefoil knot and a circle are homeomorphic, but there is no continuous deformation possible between the two. Cheers!

    • @zapazap
      @zapazap ปีที่แล้ว

      Is 'rubber sheet geometry' a good description of general topology, whose spaces sometimes are not even T1?

  • @Onism__
    @Onism__ ปีที่แล้ว

    'every surface is homeomorphic to either a sphere, torus, double torus etc..' What about an annulus, double annulus, etc? Toruses contain a 2D hole (the space in the middle) but annuli do not (sorry if incorrect terminology). Surely they are not topologically equivalent?
    (I'm pretty new to topology but if anyone could explain I'd be really grateful)

  • @user-te4jj2nq6q
    @user-te4jj2nq6q 3 ปีที่แล้ว

    Thank you very much for sharing your knowledge freely.
    In my religion this has a big reward for you from Allah.
    Thank you again.

  • @supposexy
    @supposexy 3 ปีที่แล้ว

    Outstanding Dear!!!!!!!!!!!!!!!!1 waow!!!!

  • @diegozurita9073
    @diegozurita9073 4 ปีที่แล้ว +1

    Great video!

  • @joyfuljaj
    @joyfuljaj 3 ปีที่แล้ว +1

    This is late, but I'm confused about the earth "obviously" being simply connected. If we were coming from the perspective of having never seen space images of the earth, how would we figure out that all loops can be adjusted to a point? Sorry if this is stupid, but I'm stuck on that. I've been listening to math lectures while on a road trip today, so my brain is a bit tired. I came to this video to get an explanation of how a coffee cup is a torus (I kind of get that).

    • @-minushyphen1two379
      @-minushyphen1two379 ปีที่แล้ว

      Get a really long string with its ends joined, then move it until it is not taut, and continue in that direction
      /s
      In seriousness, you could also use triangulation to find the Euler characteristic of the Earth, which itself has practical applications in cartography, so there’s an additional incentive to do it

  • @snacku7
    @snacku7 3 หลายเดือนก่อน

    Hey, can you turn a torus into a kline bottle? Both euler characteristics are 0, but I believe you can’t.

  • @izzy-jd7ft
    @izzy-jd7ft 4 ปีที่แล้ว +1

    Aye yo my g big ups man

  • @kingdomofknowledge5960
    @kingdomofknowledge5960 5 ปีที่แล้ว +1

    Excellent !

  • @fritzschnitzmueller3768
    @fritzschnitzmueller3768 3 ปีที่แล้ว +1

    I will now use this knowledge to debate flat-earthers. Earth must be a sphere!

  • @joaovaleriodesouzaneto8038
    @joaovaleriodesouzaneto8038 10 หลายเดือนก่อน

    very good!

  • @gmaximuspatt4122
    @gmaximuspatt4122 5 ปีที่แล้ว

    @ Jack Li ...what program did you use to create your presentation? Thanks

  • @kuasocto3528
    @kuasocto3528 5 ปีที่แล้ว

    Very cool video, thanks

  • @huangweicheng4215
    @huangweicheng4215 3 ปีที่แล้ว

    very interesting and straight forward, however I guess the word "verticies" is a wrong spelling

  • @B888-h2o
    @B888-h2o 4 ปีที่แล้ว

    Great video - I understand it

  • @orcodriloorquial7052
    @orcodriloorquial7052 7 ปีที่แล้ว +2

    each bridge, window, dor tunnel, .... i am not quite sure what the euler caracteristic of earth is....

  • @ambernile123
    @ambernile123 ปีที่แล้ว

    "Next time you're out with your topologists friends..." 😂

  • @mimio8
    @mimio8 3 ปีที่แล้ว

    great video!! thanks a lot

  • @jeremytalbot-paquet8679
    @jeremytalbot-paquet8679 4 ปีที่แล้ว +2

    Every surface is homeomorphic to a ball, a donut, an eight or a fidget spinner. Got it

    • @HoneycombTheywontletmeputjusto
      @HoneycombTheywontletmeputjusto 4 ปีที่แล้ว

      The human body is homeomorphic to a 7-holed donut unless you decide to pierce it

    • @zapazap
      @zapazap ปีที่แล้ว

      This will not get you to the surfaces surrounding knots.

  • @oskarhenriksson
    @oskarhenriksson 5 ปีที่แล้ว +3

    How do you know that Earth is simply connected?

    • @videostar75
      @videostar75 4 ปีที่แล้ว +2

      He explains why at 4:30. You can shrink any loop to a point without cutting or glueing

    • @maxpercer7119
      @maxpercer7119 4 ปีที่แล้ว +1

      @@videostar75 Yes but that uses 'external information from space', and he said we can demonstrate Earth is simply connected without any external information. Also is it obvious that any loop on earth can be shrunken to a point? Have we looked at every possible loop on the surface of earth? maybe there is some loop we have not yet come across that can't be shrunken to a point (which would given evidence of a toroidal surface).

    • @zapazap
      @zapazap ปีที่แล้ว

      ​@@videostar75 That holds for a sphere. To say it holds for the Earth requires more work.

  • @xyzct
    @xyzct 3 ปีที่แล้ว +1

    There's a lot of homeomorphism in San Francisco.

    • @zapazap
      @zapazap ปีที่แล้ว

      Are you thinking of homorphisms?

  • @KeithMakank3
    @KeithMakank3 6 ปีที่แล้ว +1

    Its not important to worry about why maths is important. One can assume it isn't and prove it is always.

  • @ParthSThakar
    @ParthSThakar 3 ปีที่แล้ว

    Splendid

  • @anverHisham
    @anverHisham 6 ปีที่แล้ว

    Very nice video. Thanks a lot :-)

  • @DedhertJr
    @DedhertJr 3 ปีที่แล้ว

    Why this video is recommended while I'm trying to studying the topic of math?

  • @HausdorffLover
    @HausdorffLover 4 ปีที่แล้ว

    Amazing👌🏻

  • @balazshorvath5342
    @balazshorvath5342 ปีที่แล้ว

    Two surfaces having the same euler characteristic does not garantee that they are homeomorphic. It is a required condition but it is not sufficient.
    In general the video is only about orientable surfaces, for which this is true, but there are also non orientable surfaces.

  • @mattraymond1497
    @mattraymond1497 4 ปีที่แล้ว

    that was a homotopy and the iff statement with euler characteristic doesn’t hold

  • @eleazaralmazan4089
    @eleazaralmazan4089 5 ปีที่แล้ว

    You have a typo at 1:19. It should be vertices. Other than that, thank you for the introduction.

    • @Rachel-rs7jn
      @Rachel-rs7jn 5 ปีที่แล้ว

      "Separable" was spelled wrong too. ;)

  • @PeteRoyJackson
    @PeteRoyJackson 4 ปีที่แล้ว +1

    Great tutorial... there’s “a rat” in separate -> separable. )

  • @takyc7883
    @takyc7883 3 ปีที่แล้ว

    PLEASE PART TWO

  • @zhanna7307
    @zhanna7307 ปีที่แล้ว +2

    Still donut understand

  • @Pure_Imagination_728
    @Pure_Imagination_728 2 ปีที่แล้ว

    I see some crossovers to Calc 3.

  • @j.megatron
    @j.megatron 6 ปีที่แล้ว

    Awesome

  • @lintujoshua
    @lintujoshua 5 ปีที่แล้ว

    No words!!!

  • @prod.winterxphool6227
    @prod.winterxphool6227 2 ปีที่แล้ว

    bro thats so facts

  • @brambeer5591
    @brambeer5591 3 ปีที่แล้ว

    This is content.

  • @pablogil168
    @pablogil168 ปีที่แล้ว

    This is just wrong. You can deform a ring in a circle without cutting nor terring yet they are not homeomorphic. The ring is arch-connected when removing two points and the circle is not.

    • @pablogil168
      @pablogil168 ปีที่แล้ว

      Also euler's charactistic is a topological invariant, this means that if two spaces are homeomorphic to eachother they will have the same euler's characteristic but the reciprocal statement doesn't hold. It is not an if and only if

    • @pablogil168
      @pablogil168 ปีที่แล้ว

      And you missed the projective planes when talking about clasification, this just holds for orientable ones

    • @pablogil168
      @pablogil168 ปีที่แล้ว

      Affine planes aee also simply connected, you missed the compact part

  • @TheRealNickG
    @TheRealNickG 2 ปีที่แล้ว

    That is a bad definition of homeomorphism. What matters is that there is a one to one function that assigns one set to another set. Euler characteristic is only one of an infinite number of choices of such a function.

    • @asparkdeity8717
      @asparkdeity8717 ปีที่แล้ว

      Two topological spaces X and Y are homeomorphic if there exists a bijection f : X -> Y such that both f and f^-1 are continuous, I think is the best way of defining it

    • @zapazap
      @zapazap ปีที่แล้ว

      ​@@asparkdeity8717 All knots are homomorphic. Are they all homeorphic?

  • @handledav
    @handledav ปีที่แล้ว +1

    top

  • @Idk-hg8jr
    @Idk-hg8jr 3 ปีที่แล้ว +1

    Laughs in blender

  • @gzpo
    @gzpo 2 ปีที่แล้ว +2

    It's pronounced, You-ler.

  • @evenaicantfigurethisout
    @evenaicantfigurethisout 4 ปีที่แล้ว

    dude. this is money. have a donut.

  • @FreeFieldSolutions
    @FreeFieldSolutions ปีที่แล้ว

    Does this guy have a cold or allergies or something??

  • @NivarnaMonk
    @NivarnaMonk 2 ปีที่แล้ว

    ( mathematical term for a donut 😂)

  • @walter2308
    @walter2308 ปีที่แล้ว

    cant stop pretending😭