Find all natural numbers satissfying the equation

แชร์
ฝัง
  • เผยแพร่เมื่อ 30 ม.ค. 2025

ความคิดเห็น • 144

  • @Akenfelds1
    @Akenfelds1 หลายเดือนก่อน +71

    You are the best mathematics educator I've ever seen on TH-cam. You neither overexplain nor underexplain. Every step is 100% clear.

  • @gusmath1001
    @gusmath1001 หลายเดือนก่อน +52

    Nice presentation! Note, however, that it’s not necessary to use math induction.
    Claim: If n>3, then n! >(n(n+1))/2. Multiplying both sides by 2 and dividing by n, we get the equivalent inequality 2(n-1)!>n+1. As 2(n-1)!>2(n-1), to prove the claim it will suffice to show that 2(n-1)>n+1, for n>3. But this is immediate: 2(n-1)>n+1 iff 2n-2>n+1 iff 2n-n>2+1 iff n>3.

    • @PrimeNewtons
      @PrimeNewtons  หลายเดือนก่อน +8

      I realized that while watching the video. Thanks.

  • @SG49478
    @SG49478 27 วันที่ผ่านมา +5

    This is a good example to demonstrate, how proof by induction works.
    Although there is a quicker and relatively simple way to proof this directly.
    If n>3 => 2n>n+3 => 2n-2>n+1 => (n-1)>(n+1)/2
    Obviously (n-1)! is also greater than n-1. Therefor we can safely conclude that
    (n-1)!>(n+1)/2. We now multiply both sides of the inequality by n>0:
    n(n-1)!>n(n+1)/2 => n!>n(n+1)/2. (q. e. d.)

  • @puneetkumarsingh1484
    @puneetkumarsingh1484 หลายเดือนก่อน +5

    Great application of the Principal of Mathematical Induction. We almost forget how powerful it can be at times 😅

  • @kingsgamer2019
    @kingsgamer2019 หลายเดือนก่อน +8

    Never stop learning, nice lecture, you are genious.

  • @foxywatch1527
    @foxywatch1527 24 วันที่ผ่านมา +1

    Great video! It is a pretty interesting way to show how matematicians use demostrations techniches such as proof by induction, and in a curious problem! I love your videos

  • @jpl569
    @jpl569 หลายเดือนก่อน +8

    Excellent lecture !
    Induction works smartly, with ± heavy writings…
    Let’s try directly : in order to prove that n ! > n (n + 1) / 2 for any n ≥ 4, equivalent to 2 (n-1) ! > n + 1, we notice that (for n ≥ 4 ) :
    2 (n-1) ! > 2^(n-1) because 2 (n-1) ! = 2x2x3x…x(n-1), and
    2^(n-1) > n + 1 by studying f(x) = 2^x - x - 2 for x ≥ 3 (easy stuff…).
    Then we’ve got it… Thank you for your interesting videos ! 🙂

    • @jpl569
      @jpl569 หลายเดือนก่อน +2

      An other way is : let U_n = 2 (n-1) ! and V_n = n +1.
      Then U_n+1 / U_n = 2 n and V_n+1 / V_n = (n+2) / (n+1).
      As U_3 = V_3 = 4, and for n ≥ 1, U_n+1 / U_n > V_n+1 / V_n,
      Then V_n < U_n for n ≥ 4.

  • @jay_13875
    @jay_13875 หลายเดือนก่อน +25

    Because n! ≥ n*(n-1)*(n-2) and n*(n+1)/2 < n*(n+1) for all n≥4, all we need to show is that (n-1)*(n-2) > n+1
    n² - 3n + 2 > n + 1
    n² + 1 > 4*n
    n + 1/n > 4, which is true for n ≥ 4 since 1/n > 0

    • @KPunktFurry
      @KPunktFurry 21 วันที่ผ่านมา

      1/n is never < 0 as long as n is positiv and as n is greater than 3 and a natural number i think that is proof enought

  • @mahmoudalbahar1641
    @mahmoudalbahar1641 หลายเดือนก่อน +6

    I am thankful for your efforts, your videos are always nice and filled with benefits, it's our pleasure to watch your videos.

    • @PrimeNewtons
      @PrimeNewtons  หลายเดือนก่อน +2

      I am grateful for you

  • @michaelz2270
    @michaelz2270 หลายเดือนก่อน +6

    You have n(n+1)/2 = n! iff (n + 1)/2 = (n-1)!. But one has (n - 1)! >= n - 1 > (n +1)/2 for all n > 3. So you don't have to check beyond n = 3.

  • @bashkimelbasani2382
    @bashkimelbasani2382 หลายเดือนก่อน +1

    Very methodical explanation profesor! I'm very content to You! Bravo!

  • @graemep804
    @graemep804 28 วันที่ผ่านมา +2

    I like the i which appears and disappears in the central panel...

  • @adamcionoob3912
    @adamcionoob3912 หลายเดือนก่อน +2

    Great video. While comparing n^2 + n with n + 2, you could also see that since n >= 4, n^2 >= 16 so n^2 + n >= n + 16 > n + 2

  • @Rahul.G.Paikaray27
    @Rahul.G.Paikaray27 หลายเดือนก่อน

    It's really interesting sir make more videos like this sir 💯💯💯❣️💫✨🌟

  • @dengankunghacharles1115
    @dengankunghacharles1115 หลายเดือนก่อน

    Excellent job

  • @yuwei-m3r
    @yuwei-m3r 28 วันที่ผ่านมา

    I did it similarly with one intuitive observation: n >= (n + 1) / 2:
    Because (1 + 2 + ... + n) = n * (n + 1) / 2 = n! n >= (n - 1)!
    Knowing that factorials increase quickly in comparison to a linear function, only n = 1, 2, 3 is possible, check to find n = 1, 3.

  • @9anishantgarg184
    @9anishantgarg184 28 วันที่ผ่านมา

    is there a way to solve this using the tangent property from trignometry

  • @jimwinchester339
    @jimwinchester339 27 วันที่ผ่านมา

    I totally yield to your formality about this, but I know I'm not alone in intuitively knowing that 3, and after a second's thought, also 1, were the solution set.

  • @ygalel
    @ygalel 13 วันที่ผ่านมา

    I like to think that geometrically the LHS is a quadratic and the RHS is a Gamma function on the first quadrant so intuitively there should be 2 intersections that has two solutions

  • @Your_choise
    @Your_choise หลายเดือนก่อน

    This can be done without using the formula for Σi=(n)(n+1)/2 since
    If n=1, then 1=1,
    If n=2, then LHS=3, RHS=2
    if n=3, RHS=LHS=6
    And if n ≥4, 1+2+3+…+n n-1+1=n, n! ≥n(n-1)*2>n*n=n^2> 1+2+…+n.

  • @FortuneMachaka
    @FortuneMachaka หลายเดือนก่อน

    You are the best sir

  • @maxhagenauer24
    @maxhagenauer24 หลายเดือนก่อน +5

    9:42 where did that new n+1 on the RHS come from?

    • @maxhagenauer24
      @maxhagenauer24 หลายเดือนก่อน

      @Salko_ So to get (n+l)! > (n+1)(n+2)/2, he took n! > n(n+1)/2 and replaced n with n+ 1? And then to get (n+1)n! > (n+1)n(n+1)/2, he took n! > n(n+1)/2 and multiplied both sides by n+1?

    • @Myhair0_0
      @Myhair0_0 หลายเดือนก่อน

      ​@Salko_ but are we not proving that n! > n(n+1)/2 so using that fact in our proof is circular logic?

    • @KavyaVINOCHA
      @KavyaVINOCHA หลายเดือนก่อน

      we multiply both sides of eq at 7:11 by n+1

    • @jaime9927
      @jaime9927 หลายเดือนก่อน +1

      @Myhair0_0 That's why we have to check whether the inequality holds for the base case (n=4 in this example) Then, the proof from the video, which @Salko_ summarized, shows that if the inequality holds for any integer >=4, then it holds for the next integer. Thus, after manually verifying that the inequality holds for n=4 and completing the short proof, we know that the inequality holds for n=4, n=4+1=5, n=5+1=6, and so on. Hope this helps

    • @maxhagenauer24
      @maxhagenauer24 หลายเดือนก่อน

      @@Salko_ I don't know why the freak my response got deleted last night, I was asking this:
      Are you saying (n+1)! > (n+1)(n+2)/2 come from replacing n with n+1 in the original n! > n(n+1)/2? And does (n+1)n! > (n+1)n(n+1)/2 cone from the original but after multiplying both sides by n+1?

  • @dan-florinchereches4892
    @dan-florinchereches4892 หลายเดือนก่อน +1

    Hello sir,
    Very interesting approach to the problem. But if we are looking for the condition of the equality happening is it not easier?
    What needs to happen so n*(n+1)/2=n! ?
    Since n!=0 we can divide by n so (n+1)/2=(n-1)!
    n+1=2(n-1)!
    n=2(n-1)!-1 If we replace n by k+1 to have a nicer number inside the factorial
    k=2k!-2 so k=2(k!-1) which means that k>k!-1 or k+1>k! and we can easily verify that this proposition is only true for very small values

  • @AinomugishaAllan
    @AinomugishaAllan หลายเดือนก่อน

    Thank you my best professor but I didn't understand the end part of the solution especially on how you got that of n+n to be equal to (n+1)!

  • @Wilhelm-mg1jf
    @Wilhelm-mg1jf 29 วันที่ผ่านมา

    Nice proof by induction.

  • @KPunktFurry
    @KPunktFurry 21 วันที่ผ่านมา +1

    thats a nice idear wait net me simplify the first one: (n+n²)/2 and the second one as well: n! ore use the stirling formular...
    1:00 i stll like your intro!
    2:53 ok you write it in an other way but still the same
    6:00 no it becomes interesting show it!
    7:59 so any Natural nubers higher or equal than/to 4
    8:47 but now it looks easy
    10:41 because we just deal with a n greater than 4
    12:02 nice i think i repeat it on my own board

  • @itsphoenixingtime
    @itsphoenixingtime หลายเดือนก่อน

    Very rough, not rigorous idea but...
    I figured that because the factorial grows much faster than the quadratic, after some point there won't be any more solutions, so there isn't any need to check every case.
    I remembered the 1 + 2 + 3 = 1 x 2 x 3 meme, so n = 3
    n also = 1.
    That was basically my reasoning, because after n = 3 the factorial grows much faster than the quadratic so they will never ever intersect again, the only need is to check for answers within that range.
    I think the proof of the factorial outlasting the triangular numbers for n >= 4 was rigorous to help cement that idea that they can never be equal and hence no solutions for that region.

    • @ThomasMeeson
      @ThomasMeeson หลายเดือนก่อน

      That’s obvious and as you said not rigorous

  • @yurenchu
    @yurenchu หลายเดือนก่อน

    From the thumbnail: the solutions are n=1 and n=3 . For any n>3, the cumulative product is greater than and also will be increasing faster than the cumulative sum.
    I'm watching the video to see if you consider n=0 a solution or not (and why).

  • @stevenwilson5556
    @stevenwilson5556 หลายเดือนก่อน

    I immediately know of 1, and 3. I think those are the only 2 but proving that is a whole different issue. I might be able to do that but not sure exactly what I'd do maybe induction or contradiction but would take awhile to prove it.

    • @NobleTheThinkingOne678
      @NobleTheThinkingOne678 หลายเดือนก่อน

      All you have to do is prove that n! grows faster than n(n+1)/2 for all n>=4. You can prove that and thus since 24>10. That is 4!>10 and that n! grows faster than n(n+1)/2 then I can show that n(n+1)/2 can never catch up to n! thus only 1 and 3 are true

  • @Khaled-kardashev
    @Khaled-kardashev หลายเดือนก่อน +4

    Thanks!:)

  • @maths01n
    @maths01n หลายเดือนก่อน +1

    Ready for it

  • @VisionXu-y6k
    @VisionXu-y6k หลายเดือนก่อน

    can you use gama function to figure out the equation ∑n=n!?

  • @Fereydoon.Shekofte
    @Fereydoon.Shekofte หลายเดือนก่อน

    Best wishes for you and your family Professor 🎉🎉😊😊❤❤
    In year 2025

  • @composerlmythomorphic2635
    @composerlmythomorphic2635 12 วันที่ผ่านมา

    For all n>4, n!>n(n-1)(n-2). So n(n+1)/2>n(n-1)(n-2) which is same as 2n^2-7n+3

  • @a_sigma_with_infinite_aura
    @a_sigma_with_infinite_aura 18 วันที่ผ่านมา

    Fun fact, graph f(n) = (n(n+1))/2 and g(n) = g!

  • @Sytheriss
    @Sytheriss 28 วันที่ผ่านมา

    Sorry for my bad english, I'm french.
    In my induction, I decided to make a proof by contradiction. Bascially, we wanna show that since n >= 4, the sum of all the integers from 1 to n is not equal to the product of all the integers from 1 to n.
    So we pick a n superior or equal to 4, let's assume that our property is true for that n (induction hypothesis)
    And now let's suppose that the sum from 1 to n+1 is equal to the product of all the integers from 1 to n+1. (Hypothesis of the proof by contradiction, it's a part of the induction and we will prove this is false)
    Ok so we have the sum from 1 to n+1 = the product from 1 to n+1
    Then we can say that the sum from 1 to n PLUS n+1 equals the product from 1 to n TIMES n+1.
    It's an equality so we put all the terms at the left and we have :
    (Sum from 1 to n) + (n+1) - (product from 1 to n) × (n+1) = 0
    Since the sum can be wrote n(n+1)/2 we factorise :
    (n+1)(1 + n/2 - n!) = 0
    Or n >= 4 so n+1 =/= 0
    So 1 + n/2 - n! = 0
    So 1 = n! - n/2
    So 1 = n((n-1)! - 1/2)
    So 1/n = (n-1)! - 1/2 (since n not equal to 0)
    So (n-1)! - 1/2 < 1
    So (n-1)! < 3/2
    So 2(n-1)! < 3
    Or n >= 4
    So n-1 >= 3
    So (n-1)! >= 6
    So 2(n-1)! >= 12
    And there is the contradiction
    So we have the sum from 1 to n+1 who is not equal to the product from 1 to n+1 and then we have proved it for n+1
    Thanks for all the people who will tell me my blunders : in maths but also in english. I tried my best to be understandable, so please be nice, and don't hesitate to tell me my mistakes, at least it shows that you read my work and it is very nice of you.

  • @pizza8725
    @pizza8725 หลายเดือนก่อน +1

    n²+n isn't always bigger than n+n as it is smaller at n=(0,1)

    • @AnesMechekak
      @AnesMechekak หลายเดือนก่อน

      but n is greater then 3

    • @pizza8725
      @pizza8725 หลายเดือนก่อน +1

      I know but i said that it isn't always, but it is in that case

    • @a_sigma_with_infinite_aura
      @a_sigma_with_infinite_aura 18 วันที่ผ่านมา

      @@pizza8725 💀

  • @prajjawaltiwari9566
    @prajjawaltiwari9566 หลายเดือนก่อน +1

    10:25 only if n>1, which is understood here...

  • @tiamatbenoit7267
    @tiamatbenoit7267 20 วันที่ผ่านมา

    Great! Thank you

  • @abulfazmehdizada
    @abulfazmehdizada หลายเดือนก่อน

    There are exactly 77000 ordered quadruples (a,b, c,d) such that gcd (a,b, c,d) =77 and lcm (a,b, c,d) =n, What is the smallest possible value of n?
    Hello teacher. Could we look at this question? There were many solutions that i didn't understand well. I would like to see your approach

    • @yurenchu
      @yurenchu หลายเดือนก่อน

      What restrictions are placed on a, b, c, d ? For example, can a, b, c, or d be a negative integer?

    • @abulfazmehdizada
      @abulfazmehdizada หลายเดือนก่อน

      @yurenchu there's no restrictions I think

    • @yurenchu
      @yurenchu หลายเดือนก่อน

      @@abulfazmehdizada In that case, there is no possible solution for n ; because the number of quadruples has to be a multiple of 16 ; and 77000 is not a multiple of 16 .
      A quadruple (a,b,c,d) cannot contain any 0, because in that case, n=0 and in that case there are an infinite number of quadruples, for example of the form (0, 77, 77, 77k) where k is any non-zero integer. Therefore, |a| , |b| , |c| and |d| must be positive (i.e. nonzero).
      Now, suppose (a, b, c, d) = (t, u, v, w) satisfies gcd(a,b,c,d) = 77 and lcm(a,b,c,d) = n , and t, u, v, w are positive integers. Then (t, u, v, w) represents a set of 16 _distinct_ quadruples that each satisfy the gcd and lcm conditions, namely
      (a, b, c, d) = (t, u, v, w), (t, u, v, -w), (t, u, -v, w), (t, u, -v, -w), (t, -u, v, w), (t, -u, v, -w), (t, -u, -v, w), (t, -u, -v, -w), (-t, u, v, w), (-t, u, v, -w), (-t, u, -v, w), (-t, u, -v, -w), (-t, -u, v, w), (-t, -u, v, -w), (-t, -u, -v, w), or (-t, -u, -v, -w). This is true for any quadruple (t, u, v, w) of positive integers that satisfies the conditions, hence the total number of quadruples must equal {16 times the number of distinct quadruples of only positive integers}.

    • @yurenchu
      @yurenchu หลายเดือนก่อน +1

      @@abulfazmehdizada In that case, there is no possible solution for n ; because the number of quadruples has to be a multiple of 16 ; and 77000 is not a multiple of 16 .
      A quadruple (a,b,c,d) cannot contain any 0, because in that case, n=0 and in that case there are an infinite number of distinct quadruples, for example of the form (0, 77, 77, 77k) where k is any integer. Therefore, |a| , |b| , |c| and |d| must be positive (i.e. nonzero).
      Now, suppose (|a|, |b|, |c|, |d|) = (t, u, v, w) satisfies gcd(a,b,c,d) = 77 and lcm(a,b,c,d) = n , and t, u, v, w are positive integers. Then (t, u, v, w) represents a set of 16 _distinct_ quadruples that each satisfy the gcd and lcm conditions, namely
      (a, b, c, d) = (t, u, v, w), (t, u, v, -w), (t, u, -v, w), (t, u, -v, -w), (t, -u, v, w), (t, -u, v, -w), (t, -u, -v, w), (t, -u, -v, -w), (-t, u, v, w), (-t, u, v, -w), (-t, u, -v, w), (-t, u, -v, -w), (-t, -u, v, w), (-t, -u, v, -w), (-t, -u, -v, w), or (-t, -u, -v, -w). This is true for any quadruple (t, u, v, w) of positive integers that satisfies the conditions, hence the total number of quadruples must equal {16 times the number of distinct quadruples of only positive integers}.

    • @abulfazmehdizada
      @abulfazmehdizada หลายเดือนก่อน

      @@yurenchu answer is 27720

  • @QuickStories_123
    @QuickStories_123 หลายเดือนก่อน

    Can I send you a question

  • @benjaminvatovez8823
    @benjaminvatovez8823 หลายเดือนก่อน

    Thank you for your video. It is possible not to use induction: as (n-1)! = (n+1)/2 is in Z, n must be odd and as (n-1)! = (n-1).(n-2)..2.1 > (n-1)(n-2).4 for any n >=7, we get
    (n-1)(8n-17) < 2 which is impossible as n>6.

  • @AnesMechekak
    @AnesMechekak หลายเดือนก่อน

    thank you teach us some strong induction

  • @stottpie
    @stottpie หลายเดือนก่อน

    Let's get into the video

  • @ishanpurkait9124
    @ishanpurkait9124 หลายเดือนก่อน +7

    sir , can you record me some books to learn advanced mathematics

    • @Tommy_007
      @Tommy_007 หลายเดือนก่อน

      Begin with "Algebraic Geometry" by Hartshorne.

    • @ishanpurkait9124
      @ishanpurkait9124 หลายเดือนก่อน

      @Tommy_007 thank you

    • @Tommy_007
      @Tommy_007 หลายเดือนก่อน

      @@ishanpurkait9124 It's a VERY difficult book. I'll recommend that you start with basic books about calculus, elementary number theory, classical plane geometry, linear algebra, and abstract algebra.

    • @Tommy_007
      @Tommy_007 หลายเดือนก่อน

      An older series of books that are recommended for interested high school students: New Mathematical Library.

    • @ishanpurkait9124
      @ishanpurkait9124 หลายเดือนก่อน

      thank you ,can you help me choose between calculus by stewart ( republished by clegg and watson ) and thomas , both the early transcendental version

  • @robertveith6383
    @robertveith6383 หลายเดือนก่อน

    @ Prime Newtons n = 1 *OR* 3, not 1 "and" 3.

  • @guyhoghton399
    @guyhoghton399 หลายเดือนก่อน

    Hence _tan⁻¹(1) + tan⁻¹(2) + tan⁻¹(3) = 180°_

  • @bartekd1936
    @bartekd1936 26 วันที่ผ่านมา

    from every single letter he choosed i (imaginary number)

    • @DanDart
      @DanDart 3 วันที่ผ่านมา

      Also used as the "index" variable.

  • @juergenilse3259
    @juergenilse3259 หลายเดือนก่อน

    I thin, the o natural number satisfying this equation are n=1 and n=3. The left side can be substituted b n*(n+1)/2 (according to gauss forula for sumof the first n natural numbers) while the rigtside is equall to n! (accordingto the definition of factorial).So we seach values for n with n*(n+1)/2=n!. Since n! is per definition n*(n-1)!, we can transform this equation to
    (n+1)/2=(n-1)!. n=1 and n=3 are possiblesolutionsforthhis equation, because (1+1)/2=(1-1)! and (3+1)/2=(3-1)!. Equal numbers can not fullfill the equation, because the right side is alwas a natural number, while the left side is for even values of n neer an integer. For all odd numbers n greater than 3, (n-1)! is greater than (n+1)/2, so n=1 and n=3 are the only solutions.
    For me, it was obvious,that (n-1)! is greater than (n+1)/2 for an n>3, but nice, that you gave a proof ...

  • @DanDart
    @DanDart 3 วันที่ผ่านมา

    Hmm, let's see. I'm gonna guess 1 and 3.

  • @guyhoghton399
    @guyhoghton399 หลายเดือนก่อน

    *Suppose **_∃n ≥ 4 : _Σ⁽ⁿ⁾ᵢ₌₁{i} = Π⁽ⁿ⁾ᵢ₌₁{i}_*
    ⇒ _½n(n + 1) = n!_
    ⇒ _½(n + 1)!/(n - 1)! = n!_
    ⇒ _2n!(n - 1)! = (n + 1)!_
    ⇒ _2n[(n - 1)!]² = (n + 1)! = (n + 1)n(n - 1)!_
    ⇒ _2(n - 1)! = n + 1 = (n - 1) + 2_
    ⇒ _2(n - 2)! = 1 + 2/(n - 1) < 2_ since _n ≥ 4_
    ⇒ *_(n - 2)! < 1_** which is impossible for any factorial.*
    ∴ *_Σ⁽ⁿ⁾ᵢ₌₁{i} ≠ Π⁽ⁿ⁾ᵢ₌₁{i} ∀n ≥ 4_*
    By inspection equality holds when *_n = 1 or 3 but not 2._*

  • @glorrin
    @glorrin หลายเดือนก่อน +1

    Something bugged me,
    in the induction, since we only needed n>=2
    why couldn't we start at 2 ?
    well, 15 years after formerly learning about induction, I finaly understand how important the initial step is (base case).
    if we start at 2, initial step would be
    2! = 2
    2+1 = 3
    2 is not greater than 3
    So we can't start with 2,
    And we can't start with 3 either since we have shown it is equal.
    This is a marvelous Induction.

  • @topquark22
    @topquark22 หลายเดือนก่อน

    By inspection, there is only one answer, n=3

  • @koutarousatomi1552
    @koutarousatomi1552 หลายเดือนก่อน

    Wrong notation. Why i? That is n.

    • @elliott2501
      @elliott2501 หลายเดือนก่อน

      It’s can be any variable as long as you define it that way.

  • @mathmachine4266
    @mathmachine4266 27 วันที่ผ่านมา

    n=1 and n=3.

  • @aaravgamingboy225
    @aaravgamingboy225 หลายเดือนก่อน +1

    Sir pls make video on fermat's last theorem ❤ lost of love from India ❤❤

  • @anestismoutafidis4575
    @anestismoutafidis4575 หลายเดือนก่อน

    If i=1, then n(Σ) and n(Π)= {1- ♾️ \♾️ }ℕ

  • @thomazsoares1316
    @thomazsoares1316 หลายเดือนก่อน

    n = (1;3)

  • @nanamacapagal8342
    @nanamacapagal8342 หลายเดือนก่อน +1

    ATTEMPT:
    By inspection, N = 1, 3
    1 = 1
    1 + 2 + 3 = 1 * 2 * 3 = 6
    N = 2 doesn't work.
    1 + 2 = 3, 1 * 2 = 2
    For N >= 4:
    N! > N(N-1)
    = N^2 - N
    = (N^2)/2 + N/2 + (N^2)/2 - 3N/2
    >= (N^2)/2 + N/2 + 8 - 6
    > (N^2)/2 + N/2
    = N(N+1)/2
    Which is the sum of all natural numbers up to N.
    Therefore for all natural N >= 4,
    1 + 2 + 3 + ... + N < 1 * 2 * 3 * ... * N, and so the two sides cannot be equal.
    The only solutions are N = 1 and N = 3.

    • @robertlunderwood
      @robertlunderwood หลายเดือนก่อน +1

      The one slight issue is the substitution of n = 4 in the (n²-3n)/2. We would just need to show that (n²-3n)/2 is bigger than 0 for n ≥ 4. But that's easy.

    • @robertveith6383
      @robertveith6383 หลายเดือนก่อน

      n = 1 *or* 3.

    • @Sytheriss
      @Sytheriss 28 วันที่ผ่านมา

      Yes but you have to prove it (i mean the fact that the sum from 1 to n is inferior to the product from 1 to n)

  • @DarkBoo007
    @DarkBoo007 หลายเดือนก่อน

    Me: "Obviously its n = 1 or n = 3"
    *Trying to prove that these are the ONLY values*
    Me: You got me there LMAO
    I thought about using induction to prove it since I saw that n = 4 didn't work and I knew for sure n > 4 didn't work either but I was a bit apprehensive knowing that it would've required some work.

    • @robertveith6383
      @robertveith6383 หลายเดือนก่อน

      No, it's n = 1 *OR* 3.

  • @dieuwer5370
    @dieuwer5370 หลายเดือนก่อน

    By observation: n can be 1 and 3. But not 2, 4....

    • @robertveith6383
      @robertveith6383 หลายเดือนก่อน

      No, n can be 1 *or* 3.

  • @ErickOliveira-i3w
    @ErickOliveira-i3w หลายเดือนก่อน

    log( 1 + 2 + 3 ) = log(1) + log(2) + log(3)

    • @leonz-g8l
      @leonz-g8l หลายเดือนก่อน

      that's actually true

    • @PrimeNewtons
      @PrimeNewtons  หลายเดือนก่อน +1

      Those are not natural numbers

    • @ErickOliveira-i3w
      @ErickOliveira-i3w หลายเดือนก่อน

      log( j1 x j2 x j3 x ... jn) = log(j1) + log(j2) = log(j3) + ...+ log(jn), from j1 + j2 + j3 + ... + jn = j1 x j2 x j3 x ... jn, log( j1 + j2 + j3 + ... + jn) = log(j1) + log(j2) = log(j3) + ...+ log(jn)

  • @holyshit922
    @holyshit922 หลายเดือนก่อน

    n=1 and n=3 and in my opinion that's all possibilities

    • @robertveith6383
      @robertveith6383 หลายเดือนก่อน

      n = 1 *or* 3

    • @holyshit922
      @holyshit922 หลายเดือนก่อน

      @@robertveith6383 you are right, yes n=1 xor n=3
      As a fact I can write you that in my language there is a word "albo" which suits the best here and it is equivalent to exclusive or which you don't use

  • @caio_assenção
    @caio_assenção หลายเดือนก่อน

    This is amazing!!! 🔥🫶😜

  • @lylechen8881
    @lylechen8881 หลายเดือนก่อน

    Naive

  • @maxvangulik1988
    @maxvangulik1988 หลายเดือนก่อน

    n!=n(n+1)/2
    n!=(n+1)!/2(n-1)!
    (n-1)!=(n+1)/2
    Ř(n)=(n+1)/2
    d/dn((n+1)/2)=1/2
    Ř'(1)=-ř≈-.57
    Ř'(2)=1-ř≈.43
    Ř'(3)=3-2ř≈1.86>1/2
    Ř(3)=2
    4/2=2
    the only solutions are n=1 and n=3

    • @maxvangulik1988
      @maxvangulik1988 หลายเดือนก่อน

      n! | T(n)
      1!=1 | T(1)=1
      2!=2 | T(2)=3
      3!=6 | T(3)=6
      4!=24 | T(4)=10
      5!=120 | T(5)=15
      6!=720 | T(6)=21
      7!=5040 | T(7)=28
      8!=40320 | T(8)=36
      n! is already 3 orders of magnitude larger than T(n)

  • @karamsedighi
    @karamsedighi หลายเดือนก่อน

    my friend, please answer! ! Are you from South Africa ? I LOVE MANDELA AND BLACK PEOPLE !!!!!

    • @PrimeNewtons
      @PrimeNewtons  หลายเดือนก่อน +4

      Nigeria 🇳🇬

    • @robertveith6383
      @robertveith6383 หลายเดือนก่อน

      Original poster, stop yelling in all caps. A color of a person is not to be loved. That is not logical.

  • @AmilQarayev41
    @AmilQarayev41 หลายเดือนก่อน

    THE INTEGRAL.
    1/(1+x⁴).
    THE THIRD WAY.
    WHERE IS ITTT??

    • @robertveith6383
      @robertveith6383 หลายเดือนก่อน

      Stop yelling your post in all caps.

    • @AmilQarayev41
      @AmilQarayev41 หลายเดือนก่อน

      @robertveith6383 I just wonder what the 3rd way is😞😞