Using Trig Identities: MIT Integration Bee (17)

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 ม.ค. 2025

ความคิดเห็น • 46

  • @debopamsil6965
    @debopamsil6965 6 ปีที่แล้ว +50

    I think it is safe to assume that this question was one of the easier ones

    • @kiyoponnn
      @kiyoponnn 5 ปีที่แล้ว +5

      Yes, I could solve this since high school

  • @herrneureiter9611
    @herrneureiter9611 6 ปีที่แล้ว +11

    I solved it a bit differently: I wrote everything in terms of cosine, then used the identity _2sin^2(x/2)=1-cos (x),_used the substitution _u = x/2 - 45°,_ arrived at _tan^2 (u)_ and then used the identity _tan^2 (u) = sec^2 (u) - 1_ to get _2tan (x/2 - 45°) - 2(x/2 - 45°) = 2tan (x/2 - 45°) - x + 90° = 2tan (x/2 - 45°) - x + C._ Your answer is way prettier than mine, though.

  • @skylardeslypere9909
    @skylardeslypere9909 4 ปีที่แล้ว +2

    You can also substitute
    t = tan(x/2) and get a rational function in t that you can integrate with partial fractions

  • @yashchaubey6036
    @yashchaubey6036 6 ปีที่แล้ว +4

    Alternative by using 1+sinx=(cos(x/2)+sin(x/2))^2 , same for 1-sinx, then you get integral of (tan(x/2-pi/4))^2, which can be done by converting into sec

  • @blairkilszombies
    @blairkilszombies 7 ปีที่แล้ว +18

    I think I may have discovered a new (albeit, not that useful) trig identity.
    Specifically, another answer to this integral is 2tan(x/2-pi/4)-x+c. That makes tan(x/2-pi/4)=tan(x)-sec(x)+c, where c=0.

    • @debopamsil6965
      @debopamsil6965 6 ปีที่แล้ว +6

      Elemental Lithium that is not something new I'm afraid.
      This identity was present in our textbook.

    • @angelmendez-rivera351
      @angelmendez-rivera351 6 ปีที่แล้ว +4

      Not a new identity. This identity has been widely known for millennia.

    • @bhaskarpandey8586
      @bhaskarpandey8586 6 ปีที่แล้ว +3

      Actually I also got pretty much the same ( -2cot(x/2 + pi/4) - x + constant)

    • @kiyoponnn
      @kiyoponnn 5 ปีที่แล้ว +1

      loool how arrogant are you?

    • @megauser8512
      @megauser8512 3 ปีที่แล้ว

      Nice!

  • @gitlit5489
    @gitlit5489 4 ปีที่แล้ว +1

    substitute (x = pi/2 - u) and write every thing in terms of cosine and then make use of the tan half angle formula

  • @Ensivion
    @Ensivion 6 ปีที่แล้ว +4

    you can write the second step directly as (secx -tanx)^2 and skip a few steps/identities.

    • @awawpogi3036
      @awawpogi3036 6 ปีที่แล้ว +1

      any idea on integrating that?

    • @Total_Syntheses
      @Total_Syntheses 6 ปีที่แล้ว +1

      how can integrate that form??

  • @_TharunKumar
    @_TharunKumar 3 ปีที่แล้ว +2

    Such an easy one ! Don't think , they will give this type of questions ! :)

  • @giobrach
    @giobrach 5 ปีที่แล้ว

    I think the solution set "2(tanx - secx) - x + C" does not encompass the complete collection of primitives of the integrand. For example, f(x) = 2(tanx - secx) - x + C sign(x - pi/2) is also a primitive. This is because the domain of the integrand is the union of sets (pi/2 +kpi, 5pi/2 +kpi) for all integer k, so the most general solution would be something like "2(tanx - secx) - x + sum_(k in Z) C_k * (characteristic function of (pi/2 +kpi, 5pi/2 +kpi) )", for an arbitrary collection of real constants C_k.

  • @miki2338
    @miki2338 7 ปีที่แล้ว +11

    you could simplify sec^2(x)-2sec(x)tan(x)+tan^2(x) to (sec(x)-tan(x))^2 ^^

    • @nuno9733
      @nuno9733 7 ปีที่แล้ว

      that's what i thought too

    • @wduandy
      @wduandy 6 ปีที่แล้ว +6

      hard to integrate

    • @legoushque5927
      @legoushque5927 6 ปีที่แล้ว

      You have any idea how to integrate (sec(x) - tan(x))^2?

    • @angelmendez-rivera351
      @angelmendez-rivera351 6 ปีที่แล้ว

      le Goushque Yes, actually. Not difficult, just perform a substitution.

    • @_TharunKumar
      @_TharunKumar 3 ปีที่แล้ว

      Just a waste of time :)
      Better not to simplify *_*

  • @gregorio8827
    @gregorio8827 7 ปีที่แล้ว +1

    Hi! Great video, this is a very straight forward solution.
    I have a question. Where did you studied and what (or currently studying)?

  • @ryanlian7656
    @ryanlian7656 7 ปีที่แล้ว +4

    Can u do 2017 mit bee qualifiers?

    • @LetsSolveMathProblems
      @LetsSolveMathProblems  7 ปีที่แล้ว +2

      I am planning on doing some! Are there any specific problems you wish to see? Here is the link to 2017 qualifier problems. www.mit.edu/~same/pdf/qualifying_round_2017_test.pdf

    • @ryanlian7656
      @ryanlian7656 7 ปีที่แล้ว +2

      LetsSolveMathProblems 😃 Thanks, I think 8, 10 and above all seemed hard to me, you can pick whatever is interesting to you. Thank you so much for making these videos

    • @Metalhammer1993
      @Metalhammer1993 7 ปีที่แล้ว

      dunno if 9 might be too easy but could you if it´s easy do it on a side note? cause i know it´s not hard, i know the only "trap doors" are the negative sign of the cosine in the solution and the half power. but i´m kinda falling into both after another atm^^ and 13 looks like a real joyride too. (tbh i just wanna see how hyperbolic functions are dealt with^^ i mentioned, my math education is a mess^^ SO if you leave wishes open i would be dumb to not ask for the problems i think i´d learn the most^^)

  • @sammaryadav3718
    @sammaryadav3718 6 ปีที่แล้ว +1

    Thanks Sir

  • @فارسالزعبي-ف3د
    @فارسالزعبي-ف3د 6 ปีที่แล้ว

    Thank you

  • @ahmedshiref4935
    @ahmedshiref4935 6 ปีที่แล้ว

    Can you integrate this (e^x^2)(x^2)

    • @trace8617
      @trace8617 5 ปีที่แล้ว +1

      i dont believe this function has an elementary answer

  • @nilmadhabghosh3448
    @nilmadhabghosh3448 7 ปีที่แล้ว +6

    Sir I did it by substituting
    X = ( π/2 + Z )

    • @faresberarma3349
      @faresberarma3349 7 ปีที่แล้ว +3

      Math_mega Nilmadhab explain more plz

  • @lalitverma5818
    @lalitverma5818 6 ปีที่แล้ว

    I simply this integral I got -(2cosx/(1+sinx) +X)+C...is right sir

  • @akhileshkatiyar4095
    @akhileshkatiyar4095 6 ปีที่แล้ว +1

    Sir more easy method is replace sinx by cos(90-x)

  • @nicogehren6566
    @nicogehren6566 2 ปีที่แล้ว

    nice

  • @mokouf3
    @mokouf3 4 ปีที่แล้ว +1

    This one is very easy.

  • @aman_xo
    @aman_xo 6 ปีที่แล้ว +8

    Easy, this us taught in highschools

    • @Pritzelita
      @Pritzelita 5 ปีที่แล้ว

      What's your point?

    • @Nole2701
      @Nole2701 5 ปีที่แล้ว

      @@Pritzelita why is a highschool level question in the MIT integration bee? i think thats his point.

  • @ManishKumar-sw8yk
    @ManishKumar-sw8yk 6 ปีที่แล้ว

    Sir this is very simple integration

  • @dsharma6328
    @dsharma6328 4 ปีที่แล้ว

    Easiest ever encountered