Collatz Conjecture Proof !

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ธ.ค. 2024

ความคิดเห็น • 16

  • @likedroidgt9109
    @likedroidgt9109 2 วันที่ผ่านมา +2

    I like your ideas, keep working in it.
    Congrats!

  • @adamcionoob3912
    @adamcionoob3912 2 วันที่ผ่านมา +1

    ok, as some of the comments show this does not always work (n=3 and x=39). Checked that and found out that for odd n there should be transformation 3x+n instead of (n+2)x+n, then it works fine. I also checked the even n, for n=5 and x=35 it goes to infinity (or at least doesn't go down after 1000 steps (Python loop)). I changed the transformations: (x+1)/2 -> (x+3)/2 and (x/2)+n -> (x/2)+1. Now it always leads to n+1 or 3; not perfect, but couldn't find a better formula. I think it might lead somewhere if one finds the right formula for the even n.

    • @log_menus_1
      @log_menus_1  2 วันที่ผ่านมา

      thanks , i will upload new video on this topic soon

  • @__-1234
    @__-1234 12 วันที่ผ่านมา +9

    But where is the proof ?

    • @log_menus_1
      @log_menus_1  12 วันที่ผ่านมา

      Collatz conjuncture is a special case in collatz transformation when n=1

    • @imdartt
      @imdartt 11 วันที่ผ่านมา +30

      there is no proof its just clickbait

    • @log_menus_1
      @log_menus_1  11 วันที่ผ่านมา

      May be a new understanding of collatz conjuncture

    • @danielyoutubechannel407
      @danielyoutubechannel407 11 วันที่ผ่านมา +1

      @@log_menus_1 bot?

  • @IsaacDickinson-tf8sf
    @IsaacDickinson-tf8sf 2 วันที่ผ่านมา

    I’m trying to show no four numbers in a row intersect before merging at one. Very tedious maths, but I’m working on that. I have shown other things in the conjecture and also used the Collatz sequence rules to prove that A002326 on OEIS =a(x) means that ((2^(a((q-1)/2)))-1)/q for odd q is always an integer. So if someone finds a way to show that for infinitely many composite odd q that on a((q-1)/2) there are primes, there are infinitely many Mersenne numbers with prime exponent, solving a big conjecture.

  • @3BMSCF2
    @3BMSCF2 3 วันที่ผ่านมา +2

    For n=3 the transformations are:
    Odd x: (3+2)x+3 = 5x+3
    Even x: x/2
    Sequence should always lead to 3.
    Starting with x=39 the process never leads to 3:
    39 -> 198 -> 99 -> 498 -> 249 -> 1248 -> 624 -> 312 -> 156 -> 78 -> 39
    And for n=4 the transformations are:
    Odd x: (x+1)/2
    Even x: (x/2)+n = (x/2)+4
    Sequence should always lead to n+1=4+1=5.
    Starting with x=8 the process never leads to 5:
    8 -> 8

    • @log_menus_1
      @log_menus_1  3 วันที่ผ่านมา

      You're absolutely right; 39 won't converge to 3 under these transformation rules. Notably, when n = 1, the sequence converges to 1, but it passes through 38, which is very close to 39. This implies that a self-loop for n = 1 is also necessary for higher values of x. Furthermore, if the transformation breaks for n = 3 and 4, it's likely that the transformation for n = 1 will also break for higher values of x.

  • @danielyoutubechannel407
    @danielyoutubechannel407 11 วันที่ผ่านมา +4

    If you put in "3" for n & 13 for the seed it will never reach a loop

    • @log_menus_1
      @log_menus_1  10 วันที่ผ่านมา +1

      For n=3 and x = 13 , this will lead to 3..
      According to my transformation, every transformation has one loop loop that's n for odd n ...
      For n=3 , x=13 has one 1 loop which is 3..
      Use transformation (2+3)x+3 = 5x+3 for odd x
      For even x : x/2
      13 => 67 => 34 =>17 =>88 => 11 => 36 =>9 =>30 =>15 => 48 =>3

  • @chrisking14469
    @chrisking14469 5 วันที่ผ่านมา +3

    but how do you justify the transformation is equivalent to collatz?

  • @Arsenniy
    @Arsenniy 10 วันที่ผ่านมา

    uhh