Polynomial regression

แชร์
ฝัง
  • เผยแพร่เมื่อ 17 ม.ค. 2025

ความคิดเห็น • 49

  • @BrandonSLockey
    @BrandonSLockey 4 ปีที่แล้ว +13

    BIC at 7:05
    great explanation, insanely good

  • @drewfrench8784
    @drewfrench8784 7 หลายเดือนก่อน +3

    Just found your content and I find it far clearer than most other creators who try to explain similar concepts. Good job

    • @mikexcohen1
      @mikexcohen1  7 หลายเดือนก่อน

      Thank you kindly, Drew.

  • @Bobi_pilip
    @Bobi_pilip 3 ปีที่แล้ว +3

    Hey great vid!
    Where can I watch your video about the sum of squares of the residuals?

    • @jotkej9748
      @jotkej9748 3 ปีที่แล้ว +1

      Looking for that too

    • @russellkemmit73
      @russellkemmit73 3 ปีที่แล้ว +1

      Udemy Mike Cohen, Machine Learning Course

    • @Bobi_pilip
      @Bobi_pilip 3 ปีที่แล้ว

      Thank you

  • @nzrinliyeva2913
    @nzrinliyeva2913 3 ปีที่แล้ว +2

    How can I define polynomial regression coefficient, which method can I use?

  • @sudiptochakrabarti9469
    @sudiptochakrabarti9469 ปีที่แล้ว

    Please refer the video, where you taught how to calculate SSE for specific K in the BIC formula

  • @bit-colombo5595
    @bit-colombo5595 3 ปีที่แล้ว +1

    Hello is there a video of implementing polynomial regression in python

    • @mikexcohen1
      @mikexcohen1  3 ปีที่แล้ว

      Not in this video, but in the full course, yes, there are examples in Python code with explanations.

  • @codecaine
    @codecaine ปีที่แล้ว +1

    Excellent content

    • @mikexcohen1
      @mikexcohen1  ปีที่แล้ว +1

      Glad you enjoyed it :)

  • @kanamarlapudimukhesh5619
    @kanamarlapudimukhesh5619 3 ปีที่แล้ว

    At 7:45 what is formula for SS?

  • @MrCentrax
    @MrCentrax 2 ปีที่แล้ว

    I can't find the video about the SSe formula

    • @valovanonym
      @valovanonym 2 ปีที่แล้ว

      It's actually the mse

  • @OsmanGani-b6j
    @OsmanGani-b6j 4 หลายเดือนก่อน

    Why did not you say about decent gradient algorithm? Is BIC the alternative algorithm?

    • @mikexcohen1
      @mikexcohen1  4 หลายเดือนก่อน

      Gradient descent is a nonlinear search algorithm. It's very powerful for large, complex problems that have no closed-form solution. But regression has a closed-form solution (least squares) that can be mathematically proven to be optimal.

  • @sofiansammar335
    @sofiansammar335 2 ปีที่แล้ว +1

    WOW, amazing thank you, the best video about Polynomial regression.

    • @mikexcohen1
      @mikexcohen1  2 ปีที่แล้ว +2

      Thank you, kind internet stranger.

  • @gvbvwockee
    @gvbvwockee 4 ปีที่แล้ว +2

    Really helpful stuff! Thank you.

  • @oneness-divinebeings1115
    @oneness-divinebeings1115 ปีที่แล้ว

    Very nice explanation.. Thank you so much

  • @renaldomoon3097
    @renaldomoon3097 ปีที่แล้ว

    Nice and short explanation, thanks my dude!

  • @maryammaryamian2748
    @maryammaryamian2748 4 ปีที่แล้ว

    What is your nulhypothesis and alternative hypothesis when you have a polynimial term in your regression when we are doing a t-test for each variable? Imagine you have y = b1 + b2 age + b3 age ^2? And you think that age has a negative effect on y over time?

    • @mikexcohen1
      @mikexcohen1  4 ปีที่แล้ว +1

      The null hypothesis of regressors in a model is always the same: That the coefficient (the beta value) is statistically indistinguishable from zero.

  • @Evan490BC
    @Evan490BC 3 ปีที่แล้ว

    Bayes information criterioN. Criteria is plural.

  • @jayZander
    @jayZander 3 ปีที่แล้ว

    why is a sub 2 equal to 0?

  • @philippu1455
    @philippu1455 4 ปีที่แล้ว

    Mike! I really enjoyed this insightful video. What method do you regard as the best when incorporating noise for polynomial functions?

    • @mikexcohen1
      @mikexcohen1  4 ปีที่แล้ว +2

      Hi Philipp. There are many ways to simulate noise, depending on the goal. The easiest thing to do is to use white noise (randn in MATLAB or np.random.randn in Python) with a suitable standard deviation.

    • @philippu1455
      @philippu1455 4 ปีที่แล้ว +1

      ​@@mikexcohen1 Thank you for the reply. What I am looking at is a neural network that approximates a polynomial given x values as input and their associated function values (y) as the label. I want to test the robustness of the model by adding noise to the function values of the training data. Would you say that the use of a normal distribution with a suitable standard deviation and the original, "true" y as the mean is appropriate for this endeavor?

    • @judahdsouza9196
      @judahdsouza9196 3 ปีที่แล้ว

      @@philippu1455 yeah that should work

  • @erickjian7025
    @erickjian7025 3 ปีที่แล้ว +1

    shouldn't natural log be ln? I though log is base 10 log

    • @mikexcohen1
      @mikexcohen1  3 ปีที่แล้ว

      Yikes! Yes, you're correct, and it's a bit of a typo there. I guess I was mixing code and math while writing out that equation. Anyway, my apologies for the confusion, and good catch!

    • @erickjian7025
      @erickjian7025 3 ปีที่แล้ว

      @@mikexcohen1 All good :) like your video !!!

    • @n8trh
      @n8trh 2 ปีที่แล้ว

      If memory serves, in some math books, e is the default for a log base instead of 10, i.e. "log" is used for "ln".

  • @pritamroy3766
    @pritamroy3766 3 ปีที่แล้ว

    hi mike, I have a question, that is, lets say i have data points, now I made a curve a manually (lets imagine it is possible ) joining each points one by one. it will give a some crooked curve obviously, now if I calculate BIC for this crooked curve will it give minimize value ?

  • @mo_l9993
    @mo_l9993 2 ปีที่แล้ว

    This video helped me a lot, thank you!

  • @siddhft3001
    @siddhft3001 4 ปีที่แล้ว

    Great explanation. Thank you!

  • @vgreddysaragada
    @vgreddysaragada ปีที่แล้ว

    well narrated..Thank you

  • @tenzinis5572
    @tenzinis5572 3 ปีที่แล้ว

    My first video, already hooked!

    • @mikexcohen1
      @mikexcohen1  3 ปีที่แล้ว +1

      Welcome to the team ;)

  • @sivakumar-ho3mw
    @sivakumar-ho3mw 4 ปีที่แล้ว

    Appreciated Man !!
    Great Job

  • @MB-rt8so
    @MB-rt8so 4 ปีที่แล้ว

    Thank you for this video, pls give examples for calculating best fit no. of degree & sample size calculation for polynomial equation, As per Bayes (BIC) equation.

  • @vikasjaswal9416
    @vikasjaswal9416 4 ปีที่แล้ว +1

    you are awesome

    • @mikexcohen1
      @mikexcohen1  4 ปีที่แล้ว

      No, you're awesome!
      ... well, let's both be awesome ;)

  • @Thriver21
    @Thriver21 ปีที่แล้ว

    Tq

  • @swghavoc
    @swghavoc 2 ปีที่แล้ว

    Humm