ROC Curve and AUC Value

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ธ.ค. 2024

ความคิดเห็น • 53

  • @datatab
    @datatab  ปีที่แล้ว +3

    If you like, please find our e-Book here: datatab.net/statistics-book 😎

  • @MaryamHokmabadi
    @MaryamHokmabadi ปีที่แล้ว +10

    It's been years since I tried to understand this concept, and finally with your video I get what ROC AUC is. sincere thanks.

    • @JM-bv5fv
      @JM-bv5fv 11 หลายเดือนก่อน

      حالا که این غلط گفت توی توضیحات ابتدایی. 😅

  • @Dimonanes
    @Dimonanes ปีที่แล้ว +18

    shouldn't false positive rate on 1:56 be 2/5 instead of 3/5?

    • @oluwaseuncardoso8150
      @oluwaseuncardoso8150 ปีที่แล้ว +6

      I saw that mistake too!! you not alone!

    • @senoldogan9259
      @senoldogan9259 8 หลายเดือนก่อน +1

      So i am not alone, must be 3/5...

  • @nazmussadat4984
    @nazmussadat4984 ปีที่แล้ว +6

    Best explanation I've ever had. Thank you.

  • @abdelgaderalfallah
    @abdelgaderalfallah ปีที่แล้ว +5

    Words can't express my sincere gratitude, many thanks.❤

    • @datatab
      @datatab  ปีที่แล้ว

      My pleasure 😊

  • @prof.dr.habibrehman7354
    @prof.dr.habibrehman7354 9 หลายเดือนก่อน +1

    Very very beautifully and simply explained Thanks

    • @datatab
      @datatab  9 หลายเดือนก่อน

      Most welcome 😊 Regards Hannah

  • @mdnayemsarker639
    @mdnayemsarker639 ปีที่แล้ว

    no explanation can be better than this!
    Thanks.

  • @der_dataanalyst
    @der_dataanalyst ปีที่แล้ว +2

    Fantastische Erklärung. Didaktisch ist das wirklich extrem gut. Respekt 👍🏻

    • @datatab
      @datatab  ปีที่แล้ว +1

      Hey danke für dein Feedback! Was hast du studiert? Wenn du magst kannst du dich ja mal per mail melden: mathias.jesussek@datatab.de 🙂 . Inzwischen trennen wir die deutschen von den englischen Videos, daher gibt es das gleiche sonst auch nochmal auf deutsch auf unseren deutschen Kanal : ) LG Hannah und Mathias

    • @der_dataanalyst
      @der_dataanalyst ปีที่แล้ว

      @@datatab Hey. Ja sehr gerne. Ich habe Sozialwissenschaft mit dem Schwerpunkt Sozialforschung und Statistik studiert.

  • @JanielJ-i1x
    @JanielJ-i1x 6 หลายเดือนก่อน +1

    Best of all I have searched , Keep shining Friend 😀

    • @youknowwhatlol6628
      @youknowwhatlol6628 5 หลายเดือนก่อน

      you're also learning ML, are you not? haha....where are you from, friend?

  • @AashishShah-h1k
    @AashishShah-h1k ปีที่แล้ว +9

    At 1:57, the false positive rate should be 2/5. If you are declaring diseased to be positive class, then showing healthy people as diseased is false positive. Am I correct?

    • @datatab
      @datatab  ปีที่แล้ว +1

      Oh, thanks for your comment! Yes you are correct! That's a mistake in the video! Thanks!

    • @63yas
      @63yas 7 หลายเดือนก่อน +1

      @@datatab so please pin this message.

  • @abcdsoumen
    @abcdsoumen หลายเดือนก่อน

    Very well explained

  • @teddyperera8531
    @teddyperera8531 หลายเดือนก่อน

    This is a great explanation. Thank you

  • @Ani.DR.07
    @Ani.DR.07 ปีที่แล้ว

    Beautiful explaination. Thank you !

  • @paullink6195
    @paullink6195 3 หลายเดือนก่อน

    I think there is a mistake at 5:36. It shouldn't say "the larger the AUC, the better the classifier," but instead, "the further the AUC is from 0.5." This is because 0 is not the worst classifier; 0.5 is (a random classifier). An AUC of 0 would actually be perfect since you could just invert the output of the classifier-meaning always pick "yes" if the classifier says "no," and vice versa. This would result in a perfect classifier.

    • @ElowenFaye
      @ElowenFaye หลายเดือนก่อน

      Interesting point! From a purely logical point of view, you're definitely right, you could just invert the answer. But I think in diagnostic reality, an AUC of 0 would indicate that I have fundamental misconceptions (or accidental label swaps) in the model that need adjustment.

  • @tarek_maza
    @tarek_maza 8 หลายเดือนก่อน +1

    Great video

    • @datatab
      @datatab  8 หลายเดือนก่อน

      Glad you enjoyed it

  • @zenlife37
    @zenlife37 ปีที่แล้ว

    perfect explanation.

  • @ditmerk
    @ditmerk ปีที่แล้ว +3

    Why is the false positive rate 3/5 and not 2/5 when 2 are wrongly classified as sick?

    • @AzizaRakhmonkulova
      @AzizaRakhmonkulova ปีที่แล้ว

      yeah, I agree with that, I think it should have been 2/5

  • @alainngeukeu6343
    @alainngeukeu6343 11 หลายเดือนก่อน

    great job , thank you

  • @csswatheshson1563
    @csswatheshson1563 5 หลายเดือนก่อน

    i think theres a mistake in this video at 2:44 where "true negatives" means diseased persons correctly classified as diseased

    • @ElowenFaye
      @ElowenFaye หลายเดือนก่อน

      "True negative" means a healthy person is correctly identified as healthy (negative in this context means healthy). I think i's a bit confusing since we tend to associate "negative" with disease and "positive" with healthy, but it's the other way around.

  • @abdullahilawal3251
    @abdullahilawal3251 ปีที่แล้ว

    I’m grateful

  • @brandone487
    @brandone487 2 หลายเดือนก่อน

    Is it always true that the model with the larger AUC is the better classifier? Is there a case where a larger threshold will be used in application, and one ROC curve stays higher thru this threshold than a second ROC curve, even tho the first one may have a lower AUC than the second plot?
    Thanks!

  • @asaph0301
    @asaph0301 4 หลายเดือนก่อน

    Thank you for the video. I wondering how to get the 45 for the threshold value which is positive or negative

  • @SyaerulRochman
    @SyaerulRochman ปีที่แล้ว

    Easy explanation

  • @KapilVashishat
    @KapilVashishat ปีที่แล้ว

    Very Clear Explanation . Can you explain RoC for defaulter/ non defaulter ( altaman z score) and relate it to Type 1 error and type 2 error

  • @kevalakbari4619
    @kevalakbari4619 20 วันที่ผ่านมา

    Can you always construct a ROC curve for a logistic regression model?

  • @tomitomi7941
    @tomitomi7941 4 หลายเดือนก่อน

    Thank you so much

  • @OSAMALENS9
    @OSAMALENS9 ปีที่แล้ว

    Him thanks for that, and I have a question regards, the DATATAB, how to find the frequency, I have had tried multiple times, can't find it is there is ability to do it or find it in that? thanks

  • @fVNzO
    @fVNzO 7 หลายเดือนก่อน

    It would be "An" ROC curve because we pronounce the R as "ar". So that's a bit annoying since you say a ROC curve for the entire video xd. But this was a nice explanation thanks.

  • @rajishthmittal
    @rajishthmittal ปีที่แล้ว +4

    False positive rate should be 2/5.. not 3/5 at 2.00 minutes of the video.. 3/5 is true negative rate

    • @pp100y
      @pp100y ปีที่แล้ว

      Also true positive rate should be 4/6, right?

    • @babaabba9348
      @babaabba9348 10 หลายเดือนก่อน

      you are right, she is misguiding us

    • @bhanuprakashbingi1662
      @bhanuprakashbingi1662 7 หลายเดือนก่อน

      Here comes the toppers 😂 seriously who cares man all you need is to understand the topic

  • @practicemail3227
    @practicemail3227 ปีที่แล้ว

    truly amazing content in just 7 min video. hats off.

  • @sandeepb9397
    @sandeepb9397 ปีที่แล้ว

    ie... that is!

  • @Weisysina
    @Weisysina 4 หลายเดือนก่อน

    The false positive rate will be 2 of 5

  • @engkimatlau3273
    @engkimatlau3273 ปีที่แล้ว +1

    Good explanation ma'am, may i have your whatsapp no??

    • @datatab
      @datatab  ปีที่แล้ว

      Many many thanks for your feedback! But unfortunately we do not give out our phone number!

    • @MyNNiCo
      @MyNNiCo ปีที่แล้ว +1

      @@datatab xD