Lecture - 8 Discrete Time Fourier Transform

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 พ.ย. 2024

ความคิดเห็น • 61

  • @sandeepchinthala200
    @sandeepchinthala200 3 ปีที่แล้ว +5

    We do look your lectures Like a jeweller looks an ornament. Because they are pure gold.

  • @surabhi.lakahmikumar4192
    @surabhi.lakahmikumar4192 8 ปีที่แล้ว +37

    thank you for your lecture I got PhD in BITS Pilani because of listening to your lecture

    • @akshayakhi5451
      @akshayakhi5451 7 ปีที่แล้ว +1

      really??

    • @AtulKumar-yf8sb
      @AtulKumar-yf8sb 4 ปีที่แล้ว +1

      what question did they asked u ? I am also going to give interview for phd

    • @dhruvandangar9972
      @dhruvandangar9972 3 ปีที่แล้ว +1

      at 33.57 i think we get wh*L instead of Wh/L because it is scaling property if you decrease time domain then you will increase frequency domain can any one have a ans please tell me.

    • @its__OVER
      @its__OVER 9 วันที่ผ่านมา

      ​@@dhruvandangar9972 you are taking about downsampler, in upsample we increase time domain and hence shrink the Freq domain
      n-> n/L
      w -> w•L

  • @tyons3701
    @tyons3701 9 ปีที่แล้ว +1

    NICE WAY OF TEACHING AND MAKES ANYONE UNDERSTAND EVEN IF THE LISTENER IS A NEW TO THIS FIELD OF DSP

  • @arnabchakraborty3645
    @arnabchakraborty3645 ปีที่แล้ว

    My Concept is clear.Thank you NPTELhrd ❤

  • @sameergarg9923
    @sameergarg9923 12 ปีที่แล้ว +2

    thanks to all nptel team ...awesome class............

  • @FillUpMySenses
    @FillUpMySenses 12 ปีที่แล้ว +8

    The starting music is like that of Tom and Jerry lol. Good lectures :)

  • @arsenalall
    @arsenalall 16 ปีที่แล้ว +7

    In the example that was give, there is a mistake in the sequence. It should be symmetrical x[n]= [1/4,1,7/4,0,-7/4,-1,-1/4]

    • @autosigner3294
      @autosigner3294 6 ปีที่แล้ว

      i am also getting the values you mentioned

    • @pankhurisaxena
      @pankhurisaxena 6 ปีที่แล้ว

      Same here

    • @bajibabu4436
      @bajibabu4436 4 ปีที่แล้ว

      Yes...we will get these values only

    • @dhruvandangar9972
      @dhruvandangar9972 3 ปีที่แล้ว

      at 33.57 i think we get wh*L instead of Wh/L because it is scaling property if you decrease time domain then you will increase frequency domain can any one have a ans please tell me.

    • @homejio1079
      @homejio1079 3 ปีที่แล้ว

      Getting 3 in place of 7

  • @rajatkmitra
    @rajatkmitra 13 ปีที่แล้ว

    I stand corrected.....see the previous lecture about 24 minutes into it...the professor derives an FIR recursively....similarly it is clear that at IIR can be derived non recursively...

    • @dhruvandangar9972
      @dhruvandangar9972 3 ปีที่แล้ว

      at 33.57 i think we get wh*L instead of Wh/L because it is scaling property if you decrease time domain then you will increase frequency domain can any one have a ans please tell me.

  • @AnilKumar-tk1oh
    @AnilKumar-tk1oh 11 ปีที่แล้ว

    Superb.. Sir !really awesome

  • @laalioj
    @laalioj 14 ปีที่แล้ว

    the indian universities always have such class animations

  • @lednakashim
    @lednakashim 13 ปีที่แล้ว

    BEST INTRO EVER

  • @YVparari
    @YVparari 11 ปีที่แล้ว +2

    Why is upsampler your fav ?

  • @gurugurumarimo5294
    @gurugurumarimo5294 6 ปีที่แล้ว +3

    55:15 X*(n)----X*(e^(-jw)) , missed a minus

  • @edwinr4378
    @edwinr4378 4 ปีที่แล้ว +1

    Best experience when u watch it at 1.25x speed

    • @dhruvandangar9972
      @dhruvandangar9972 3 ปีที่แล้ว

      at 33.57 i think we get wh*L instead of Wh/L because it is scaling property if you decrease time domain then you will increase frequency domain can any one have a ans please tell me.

  • @EmadTAudi
    @EmadTAudi 7 ปีที่แล้ว +6

    Watch at 1.5X to save time

  • @MexterO123
    @MexterO123 8 ปีที่แล้ว +1

    @ 46:19, How did Professor Roy take the DTFT of the -2(alpha)^-2 and -1(alpha)^-1 term?

    • @Pankaj9165
      @Pankaj9165 8 ปีที่แล้ว

      He went by the basic DTFT formula but he went term by term (time intants -2,-1) until he got to the part where he already had a tranform availble (0 onwards).

    • @youtubepremium2534
      @youtubepremium2534 4 ปีที่แล้ว +1

      Look at the basic formula of DFT , for n=-2, put x[-2]= -2alpha^-2

    • @dhruvandangar9972
      @dhruvandangar9972 3 ปีที่แล้ว

      at 33.57 i think we get wh*L instead of Wh/L because it is scaling property if you decrease time domain then you will increase frequency domain can any one have a ans please tell me.

  • @salauddin888
    @salauddin888 7 ปีที่แล้ว

    what are the number o Complex multiplication and complex additions for 2D-FFT algorithm?

  • @naveen7752
    @naveen7752 3 ปีที่แล้ว +1

    how we get sum of 1/n^2=pie/6

  • @deepjyotidas7558
    @deepjyotidas7558 9 ปีที่แล้ว +1

    at 24.34 why k=0 for the range -pi to +pi
    and where did the summation go

    • @prosenjitmondal9011
      @prosenjitmondal9011 8 ปีที่แล้ว

      +Deepjyoti Das because it is 2pik and k varies from - infi to + infi so this will be -infi *2 pi,....,pi,0,pi,....infi *2 pi, but now we are looking at the baseband, our interest of vision is in between -pi to +pi (integration limit) and in this k has no value as it is in discrete form it can only attain integer so in between this every time k will be zero intuitively.

    • @dhruvandangar9972
      @dhruvandangar9972 3 ปีที่แล้ว

      at 33.57 i think we get wh*L instead of Wh/L because it is scaling property if you decrease time domain then you will increase frequency domain can any one have a ans please tell me.

  • @SuperKreyszig
    @SuperKreyszig 7 ปีที่แล้ว +5

    01:00

  • @arohisingh1045
    @arohisingh1045 6 ปีที่แล้ว

    Respect ....

  • @dhruvandangar9972
    @dhruvandangar9972 3 ปีที่แล้ว

    at 33.57 i think we get wh*L instead of Wh/L because it is scaling property if you decrease time domain then you will increase frequency domain can any one have a ans please tell me.

    • @sudpn2861
      @sudpn2861 2 ปีที่แล้ว +1

      Your argument is rit but,, actually you are misinterpreting that we are compressing the signal in time domain in an upsampler because of
      n/L term in x(n/L).The value we are getting at say n=3 i.e. x(3) after upsampling x(n) we will get x(3) at n=3L as puting =3L in x(n/L) gives x(3)(L>1).So actually an upsampler streching out the signal not compressing it.

  • @rooyresh
    @rooyresh 13 ปีที่แล้ว

    Good evening sir.. Can i know what is the application which is using DTFT?

    • @aniket4952
      @aniket4952 3 ปีที่แล้ว +1

      Speech processing, Image processing, and Digital signal processing

    • @rooyresh
      @rooyresh 3 ปีที่แล้ว

      @@aniket4952 Thanks for the answer

    • @aniket4952
      @aniket4952 3 ปีที่แล้ว

      @@rooyresh Wow. After 9 years it is still helpful? 😆

    • @rooyresh
      @rooyresh 3 ปีที่แล้ว +3

      @@aniket4952 At least someone answered and it would help others too... haha

  • @lilhalosoldier
    @lilhalosoldier 15 ปีที่แล้ว

    thank you

  • @azaadb2207
    @azaadb2207 8 ปีที่แล้ว

    please update
    radix-2 fft algorithm

  • @alex3ff4rly
    @alex3ff4rly 14 ปีที่แล้ว +1

    is it just me or does this guy look like an indian Bill Murray?

  • @chingkui
    @chingkui 13 ปีที่แล้ว

    I don't think an IIR filter can be implemented non-recursively, can anyone give me a counter-example?

    • @ShouvikDas2109
      @ShouvikDas2109 7 ปีที่แล้ว

      Yes try the equation of an accumulator --- y[n]= Sum of x[n-k] where k goes from 0 to infinity. This is an IIR filter implemented non-recursively. Of course it is causal as well.

  • @jpmorgan187
    @jpmorgan187 15 ปีที่แล้ว +2

    Did you know that if you take the Fourier Transform of milk you will get paneer?

  • @FerdBrowne
    @FerdBrowne 13 ปีที่แล้ว

    @alex3ff4rly I would have said Stevan Segal

  • @FerdBrowne
    @FerdBrowne 13 ปีที่แล้ว

    Stephan Segal

  • @malayjain850
    @malayjain850 7 ปีที่แล้ว +2

    1:00

  • @kavoos1000
    @kavoos1000 11 ปีที่แล้ว

    no you will get molecules of milk :)

  • @muhammedshanid4523
    @muhammedshanid4523 5 ปีที่แล้ว

    oru undayum manasilavunnilla

  • @AnilKumar-tk1oh
    @AnilKumar-tk1oh 11 ปีที่แล้ว +3

    Superb.. Sir !really awesome