Master Reading Spark DAGs

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 ธ.ค. 2024

ความคิดเห็น • 61

  • @afaqueahmad7117
    @afaqueahmad7117  ปีที่แล้ว +6

    🔔🔔 Please remember to subscribe to the channel folks. It really motivates me to make more such videos :)

    • @lunatyck05
      @lunatyck05 ปีที่แล้ว

      Done - awesome videos will watch the rest of the series. Would be great to get some databricks oriented videos also when possible

  • @gabriells9074
    @gabriells9074 ปีที่แล้ว +3

    this is probably the best explanation I've seen on spark DAG's. Please keep up the amazing content! thank you

  • @niladridey9666
    @niladridey9666 ปีที่แล้ว +1

    again in depth content. Thanks a lot. Please discuss a scenario based question on todays topics.

  • @joseduarte5663
    @joseduarte5663 3 หลายเดือนก่อน

    Awesome video! I've been searching for something like this and all the other videos I found don't get to the point and neither explain things as good as you do. I'm definitely subscribing and sharing this with other DE's from my team, please keep posting content like this!

    • @afaqueahmad7117
      @afaqueahmad7117  3 หลายเดือนก่อน

      Appreciate the kind words @joseduarte5663 :)

  • @yuvrajyuvas4730
    @yuvrajyuvas4730 10 หลายเดือนก่อน

    Bro..Can't thank you enough... This is what exactly I was looking... Thanks a ton bro... 🎉

  • @BuvanAlmighty
    @BuvanAlmighty ปีที่แล้ว +1

    Beautiful content. Very clear and crystal explanation. Thank you for doing this. ❤❤

  • @Fullon2
    @Fullon2 ปีที่แล้ว

    Nice serie about performance, waiting for more videos, tranks.

  • @saravananvel2365
    @saravananvel2365 ปีที่แล้ว

    amazing explanination ..Waiting for more videos from you

  • @varunparuchuri9544
    @varunparuchuri9544 6 หลายเดือนก่อน +2

    @Afaque asually amazing vedio bro. It's been more than 1 month we are dying of waiting for vedios from you

    • @afaqueahmad7117
      @afaqueahmad7117  6 หลายเดือนก่อน +1

      A new playlist coming soon brother :)

    • @pachamattlajyothi249
      @pachamattlajyothi249 5 หลายเดือนก่อน

      @@afaqueahmad7117 waiting

  • @VijaySingh-x3f
    @VijaySingh-x3f 9 หลายเดือนก่อน

    Doing fantastic work bro.... Keep this up 💪❤

  • @ManaviVideos
    @ManaviVideos ปีที่แล้ว +1

    It's really informative session, thank you!!

  • @HarbeerKadian-m3u
    @HarbeerKadian-m3u 5 หลายเดือนก่อน

    Amazing. This is just too good. Will share with my team also.

    • @afaqueahmad7117
      @afaqueahmad7117  4 หลายเดือนก่อน

      Really appreciate it @HarbeerKadian-m3u :)

  • @CharanSaiAnnam
    @CharanSaiAnnam 9 หลายเดือนก่อน

    very good explanation, thanks. you earned a new subscriber

  • @Learner1234-hv4be
    @Learner1234-hv4be 7 หลายเดือนก่อน

    Great explanation bro,thanks for the great work you are doing

    • @afaqueahmad7117
      @afaqueahmad7117  7 หลายเดือนก่อน +1

      Thank you @Learner1234-hv4be, really appreciate it :)

  • @OmairaParveen-uy7qt
    @OmairaParveen-uy7qt ปีที่แล้ว

    Explained so well!! Crystal clear!

  • @balakrishna61
    @balakrishna61 7 หลายเดือนก่อน

    Nice explanation.Great work.Thank you .Liked and Subscribed.

    • @afaqueahmad7117
      @afaqueahmad7117  7 หลายเดือนก่อน

      Thank you @balakrishna61, appreciate it :)

  • @RaviSingh-dp6xc
    @RaviSingh-dp6xc หลายเดือนก่อน

    please make a full pyspark tutorial.. This is very interesting topic and explained very nicely 👍

    • @afaqueahmad7117
      @afaqueahmad7117  หลายเดือนก่อน

      Thanks @RaviSingh-dp6xc, more PySpark content coming soon! :)

  • @rambabuposa5082
    @rambabuposa5082 8 หลายเดือนก่อน

    Hi Afaque Ahmad
    At 13:37 you were saying that separate job for shuffle operation that one job for transactions dataset shuffle operation and one for customers dataset.
    Im bit confused why they need a separate job? As per my understanding, when spark encounters a shuffle operation, it just creates a new stage within that job right?
    When I execute the same code snippet, it create 5 jobs totally: two for metadata (expected), two for shuffle operation (not expected) and final one is for join operation.
    Many thanks

  • @tahiliani22
    @tahiliani22 8 หลายเดือนก่อน +1

    At 16:49, as part of the AQE plan for the larger dataset, the way that I understood is 1 skewed partition was split in 12 and finally we had 24+12 = 36 partitions. We see the same on Job Id 9 at 13:40 that it had 36 tasks. But I heard you say that 36 partitions have been reduced to 24. Can you please help clear the confusion ? thank you.

    • @rambabuposa5082
      @rambabuposa5082 8 หลายเดือนก่อน

      I think in that AQE Step, AQEShuffleRead reads 200 partitions (as per previous node) from customers dataset, then coalesced to 24 then something happened and make them to 36 thats why that right side node is showing "number of of partitions 36".
      At left side for transactions dataset, this "number of of partitions 36" is appearing as last value where at right side for customers dataset its appearing as first value.
      But Im not sure what is that " something"???

  • @rambabuposa5082
    @rambabuposa5082 8 หลายเดือนก่อน

    Hi Afaque Ahmad
    At 7:24, you were saying that a batch is a group of rows and its not same as a partition.
    Shall we assume something like
    a group of rows read from one or more partitions available in one or more executors (not from all executors) to match that df.show() count?

  • @ankursinhaa2466
    @ankursinhaa2466 ปีที่แล้ว

    Thank you Bro!! your videos are very informative and helpful. Can you please one video explaining setting up spark in local machine. That will be very helpful

    • @afaqueahmad7117
      @afaqueahmad7117  ปีที่แล้ว

      Thanks @ankursinhaa2466, videos on deployment (local and cluster) coming soon :)

  • @CoolGuy
    @CoolGuy ปีที่แล้ว +1

    Done with the second video on this channel. See you tomorrow again.

  • @tandaibhanukiran4828
    @tandaibhanukiran4828 9 หลายเดือนก่อน

    Hello Bro,
    I have a doubt. at "23:30 min" playtime, it was mentioned that AQEShuffleRead: coalesced partitions into 1, then will the other worker nodes will sit ideal ?
    In the Video it is mentioned that even after shuffle, all A's will be in 1 partition and B's in another partition.
    can you please explain me, what do you actually mean by Number of Coalesced Partitions=1

  • @i_am_out_of_office_
    @i_am_out_of_office_ 8 หลายเดือนก่อน

    very well explained!!

  • @nayanroy13
    @nayanroy13 ปีที่แล้ว

    awesome explanation.👍

  • @jdisunil
    @jdisunil 10 หลายเดือนก่อน

    your expertise and explanations is like "filtered gold in one can " Can you make quick video on AQE in depth please. 1000 thanks

    • @afaqueahmad7117
      @afaqueahmad7117  10 หลายเดือนก่อน

      Thanks @jdisunil for the kind words. There's already an in-depth video on AQE.
      You can refer here: th-cam.com/video/bRjVa7MgsBM/w-d-xo.html

  • @viswanathana3759
    @viswanathana3759 8 หลายเดือนก่อน

    Amazing content. Keep it up

  • @zulqarnainali6560
    @zulqarnainali6560 ปีที่แล้ว

    beautifully explained!

  • @subaruhassufferredenough7892
    @subaruhassufferredenough7892 ปีที่แล้ว

    Could you also do a video on Spark SQL and how to read DAGs/Execution Plans for that? Amazing video btw, subscribed!!

    • @afaqueahmad7117
      @afaqueahmad7117  ปีที่แล้ว +1

      Hey @subaruhassufferredenough7892, Thanks you for the kind words, really appreciate it :)
      On Spark SQL, DAGs/Execution plans for both Spark SQL and non-SQL (python) are the same as they are compiled/optimized by the same underlying engine/catalyst optimizer.

  • @muhammadhassan1640
    @muhammadhassan1640 ปีที่แล้ว

    Excellent bro

  • @SHUBHAM_707
    @SHUBHAM_707 6 หลายเดือนก่อน

    Please make a dedicated video on shuffle partition... how it behaves when it's increased or decrease from 200

    • @afaqueahmad7117
      @afaqueahmad7117  6 หลายเดือนก่อน

      Hey @SHUBHAM_707, have you watched this - th-cam.com/video/q1LtBU_ca20/w-d-xo.html

  • @tejasnareshsuvarna7948
    @tejasnareshsuvarna7948 5 หลายเดือนก่อน

    Thank you very much for the explanation. But I want to know what is your source of knowledge. Where do you learn these things?

  • @TechnoSparkBigData
    @TechnoSparkBigData ปีที่แล้ว

    Thanks for this. When is the next video coming sir?

  • @pratiksatpati3096
    @pratiksatpati3096 ปีที่แล้ว

    Superb ❤

  • @VenkatakrishnaGangavarapu
    @VenkatakrishnaGangavarapu ปีที่แล้ว

    why shuffle partitions made 200 hundread. when we have only 13 partitions max. at 14:55

    • @afaqueahmad7117
      @afaqueahmad7117  ปีที่แล้ว

      By default, shuffle partitions are 200, hence you see that in the 'Exchange' step. The reduction (optimization) to fewer partitions takes place in the 'AQEShuffleRead' step below.

  • @RishabhTakkar-o6l
    @RishabhTakkar-o6l 4 หลายเดือนก่อน

    How do you access this spark UI?

  • @ComedyXRoad
    @ComedyXRoad 6 หลายเดือนก่อน

    thank you

  • @abdulraheem2874
    @abdulraheem2874 ปีที่แล้ว

    Bhai , can help to make a video on spark architecture as well for beginners

  • @satheeshkumar2149
    @satheeshkumar2149 10 หลายเดือนก่อน

    While stages are created whenever a shuffle occurs, how are jobs created?

    • @afaqueahmad7117
      @afaqueahmad7117  10 หลายเดือนก่อน

      Hey @satheeshkumar2149, jobs are created whenever an actions is invoked. Examples of action in Apache Spark can be - collect(), count()

    • @satheeshkumar2149
      @satheeshkumar2149 10 หลายเดือนก่อน

      @@afaqueahmad7117 , but in some cases we have more than one job being created. This is where I find difficulty in understanding

  • @NiranjanAnandam
    @NiranjanAnandam 5 หลายเดือนก่อน +1

    No clarity is provided on when job is created. The stages are result of shuffle. The task is just a unit of execution