SVM Kernels : Data Science Concepts

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ก.พ. 2025

ความคิดเห็น • 127

  • @cassie8324
    @cassie8324 2 ปีที่แล้ว +65

    you have been teaching me the fundementals of SVMs better than my expensive professor at my university. thank you, man.

  • @Gibson-xn8xk
    @Gibson-xn8xk 2 ปีที่แล้ว +27

    I started learning SVM looking for some material that would provide an intuitive understanding of how this model works. By this time, i have already covered in depth all the mathematics behind it and I have spent almost a month on it. It sounds like a eternity, but i can’t feel myself confident, until i consider everything in details. In my opinion, basic intuition is the most important thing in model’s exploration and you did this extremely cool. Thank you for your time and work. For those, who are new to this channel, i highly recommend you to subscribe. This guy makes an awesome content!

  • @matattz
    @matattz ปีที่แล้ว +8

    Hey, i love that everything we learn in the video is already written on the board. It's so clean and compact, yet so much information. Just great man

    • @ritvikmath
      @ritvikmath  ปีที่แล้ว +1

      Thanks so much !

  • @flvstrahl
    @flvstrahl ปีที่แล้ว +5

    By far the best explanation of kernels that I've seen/read. Fantastic job!

  • @samruddhideshmukh5928
    @samruddhideshmukh5928 3 ปีที่แล้ว +11

    Amazing explanation!! Finally kernels are way more clearer to me than they have been in the past.

  • @norebar5848
    @norebar5848 2 ปีที่แล้ว +2

    You are blowing my mind sir, thank you for this amazing explanation! No one else has been able to teach the subject of SVM this well.

  • @tgross2
    @tgross2 11 หลายเดือนก่อน

    Was stuck for 3 days on kernels looking at numerous lectures online. You just made it clear. Thank you so much!

  • @DavidLolxe
    @DavidLolxe 2 ปีที่แล้ว +1

    As someone who's searched everywhere for an explanation about this topic, this is the only good one out there. Thanks so much!

  • @guygirineza4001
    @guygirineza4001 3 ปีที่แล้ว +2

    Might be one of the best videos I have seen on SVM. Crazy

  • @xKikero
    @xKikero ปีที่แล้ว +1

    This is the best video I've seen on this topic. Thank you, sir.

  • @DevanshKhandekar
    @DevanshKhandekar 3 ปีที่แล้ว +2

    Great Man. After months of stumbling over the convex optimization theories and KKT and whatnot, this video made everything clear . Highly appreciated.👏👏

  • @moravskyvrabec
    @moravskyvrabec ปีที่แล้ว

    Dude, like the other commenters say, you are so good at just laying stuff out in plain English. Just for this and the prior video I'm going to hit subscribe...you deserve it!

  • @1MrAND
    @1MrAND 7 หลายเดือนก่อน +1

    Dude, you are a legend. Finally I understood the power of Kernel functions. Thanks!

  • @bztomato3131
    @bztomato3131 6 หลายเดือนก่อน

    When some one has tries a lot to know something, he can explain it much better than others, thanks a lot.

  • @gufo__4922
    @gufo__4922 2 ปีที่แล้ว

    I found you by case and this was a damn miracle, will constantly check for new videos

  • @obakasan31
    @obakasan31 ปีที่แล้ว

    This is the clearest explanation of this topic I've seen so far. Thank you

  • @AndBar283
    @AndBar283 3 ปีที่แล้ว +4

    Huge, big thank you, for your hard work and spreading the knowledge. Nice, brave explanation.

  • @JohnsonZhongJunoStellar
    @JohnsonZhongJunoStellar 3 หลายเดือนก่อน

    The best explaination video about SVM, better than my professor at my university, thank you !

  • @alimurtaza4904
    @alimurtaza4904 ปีที่แล้ว +1

    This explanation cleared up everything for me! Amazing work, I can’t thank you enough!

  • @johnstephen8041
    @johnstephen8041 10 หลายเดือนก่อน

    Bro - Thanks much!!'
    The way that you are teaching and your understanding is crazy!

    • @ritvikmath
      @ritvikmath  10 หลายเดือนก่อน

      Happy to help!

  • @amaramar4969
    @amaramar4969 10 หลายเดือนก่อน

    Amazing, Amazing, you are my true guru while I prepare for the university exam. You are far far above my college professors whom I barely understand. Hope you get your true due some how. Subscribed already. 🙏

  • @SiddhantSethi02
    @SiddhantSethi02 ปีที่แล้ว

    Hey man,
    Just wanted to admire you for your beautiful work on bringing some of the key complex fundamentals such as this to ease. :D.

  • @anurondas3853
    @anurondas3853 2 ปีที่แล้ว +1

    Much better than other youtubers explaining the same concept.

  • @qiguosun129
    @qiguosun129 2 ปีที่แล้ว +1

    You summed up all the needed knowledge about svm, and the discussion in this episode is more philosophical, thank you very much for the course.

  • @mehdi_mbh
    @mehdi_mbh ปีที่แล้ว

    You are amazing! Thank you so much for explaining the math and the intuition behind all of this. Fantastic teaching skills.

  • @danielbriones6171
    @danielbriones6171 2 ปีที่แล้ว

    Been struggling to grasp this even after watching a bunch of TH-cam videos. Finally understand! Must be the magic of the white board!

  • @adelazhou5900
    @adelazhou5900 10 หลายเดือนก่อน

    The two paths diagram explains everything so clearly! Thank you!!

    • @ritvikmath
      @ritvikmath  10 หลายเดือนก่อน

      You're very welcome!

  • @axadify
    @axadify 3 ปีที่แล้ว

    Thats the best video I have seen on kernels on YT! great content

  • @yt-1161
    @yt-1161 3 ปีที่แล้ว

    Your data science concepts video series is one of a kind

  • @uoohknk6881
    @uoohknk6881 2 ปีที่แล้ว

    You spittin knowledge, GD! This needs to go viral

  • @Stardust_Byproduct
    @Stardust_Byproduct ปีที่แล้ว +2

    I'd love to see a video on Gaussian Process Regression, or just Gaussian Processes in general! Thanks for this video - very helpful

  • @BiKey91
    @BiKey91 ปีที่แล้ว

    dude I like before even watching the vids because I know I won't be disappointed

  • @Palapi_H
    @Palapi_H ปีที่แล้ว

    Cant thanks you enough to explain it so simply.

  • @DeltaPi314
    @DeltaPi314 3 ปีที่แล้ว +2

    Marketer studying Data Science here. Amazing content!

    • @ritvikmath
      @ritvikmath  3 ปีที่แล้ว

      Glad you enjoy it!

  • @CodeEmporium
    @CodeEmporium 3 ปีที่แล้ว +5

    Good stuff

    • @ritvikmath
      @ritvikmath  3 ปีที่แล้ว +1

      Thanks for the visit!

  • @Ranjithbhat444
    @Ranjithbhat444 2 ปีที่แล้ว

    Can’t get any better explanation than this 👌🏼

  • @aalailayahya
    @aalailayahya 3 ปีที่แล้ว +4

    Absolutely great !

  • @twincivet9668
    @twincivet9668 2 ปีที่แล้ว +5

    Note, to get the inner product after transformation to be equivalent to (1+x_i * x_j)^2, the transformation will need to have some constants. Specifically, the transformation should be [x1, x2] --> [1, sqrt(2)*x1, sqrt(2)*x2, x1^2, x2^2, sqrt(2)x1*x2]

    • @durgeshmishra-fn6kx
      @durgeshmishra-fn6kx ปีที่แล้ว

      Instead ignore the coefficients (for example will have a term 2 xi^(1) xj^(1) so only consider xi^(1) xj^(1) and drop the 2 in the expansion you will get the match).

  • @alessandro5847
    @alessandro5847 3 ปีที่แล้ว

    Such a great explanation. First time I get it after many attempts

  • @zzzzzzzmr9759
    @zzzzzzzmr9759 ปีที่แล้ว

    Very clear and well-organized explanation. Thank you!

    • @ritvikmath
      @ritvikmath  ปีที่แล้ว

      Glad it was helpful!

  • @pranavjain9799
    @pranavjain9799 3 ปีที่แล้ว +1

    This is an incredible explanation. It helped me alot. Thank you so much.

  • @Anbuteam7
    @Anbuteam7 9 หลายเดือนก่อน

    That's a great video. Thank you for making this.

  • @softerseltzer
    @softerseltzer 3 ปีที่แล้ว

    Your videos are of exquisite quality.

  • @liat978
    @liat978 ปีที่แล้ว

    this is the first time i get it! thank you

  • @thecamelbackfiles3685
    @thecamelbackfiles3685 2 ปีที่แล้ว

    Smart AND fit - these videos are like candy for my eyes and brain 🧠 😂

  • @process6996
    @process6996 3 ปีที่แล้ว +2

    Awesome explanation. Thank you!

    • @ritvikmath
      @ritvikmath  3 ปีที่แล้ว +1

      Glad it was helpful!

  • @morisakomasaru8020
    @morisakomasaru8020 3 ปีที่แล้ว

    I finally understood what a kernel does! Thanks!

  • @martian.07_
    @martian.07_ ปีที่แล้ว

    Very underrated video

  • @Daily_language
    @Daily_language 9 หลายเดือนก่อน

    Clearly explained! Thank you!

  • @zilaleizaldin1834
    @zilaleizaldin1834 2 หลายเดือนก่อน

    waaaaaaaw!!! You are really amazing!!!! I hope to work with you and see how it is 😊

  • @hazema.6150
    @hazema.6150 2 ปีที่แล้ว

    Masha'Allah man, like really Masha'Allah. This is just beautiful and truly a piece of gold. Thank you for this

  • @abdelrahmantaha9785
    @abdelrahmantaha9785 ปีที่แล้ว

    very well explained, thank you!

  • @kottybeats
    @kottybeats 2 หลายเดือนก่อน

    amazing video, thanks a lot!

  • @shaktijain8560
    @shaktijain8560 2 ปีที่แล้ว

    Simply amazing 🤩

  • @eyuelmelese944
    @eyuelmelese944 2 ปีที่แล้ว

    This is amazing

  • @javiergonzalezarmas8250
    @javiergonzalezarmas8250 2 ปีที่แล้ว

    Beautiful

    • @ritvikmath
      @ritvikmath  2 ปีที่แล้ว

      Thank you! Cheers!

  • @eacd2743
    @eacd2743 ปีที่แล้ว

    Great video man thanks a lot!

  • @jasonwang9990
    @jasonwang9990 3 ปีที่แล้ว

    Amazing explanation!

  • @alexzhai5944
    @alexzhai5944 7 วันที่ผ่านมา

    Quick question. The point of inner products is to see how similar the two data points are right? And the point of “transforming” the original points to higher dimension is to see relationships between the og data points that aren’t clear in 2D? Like for example, how similar the 2 dot products of xy(where x and y are two features) are for data point 1 and 2, and then this similarity would be used to seperate the variables? Thank you

  • @jalaltajdini7959
    @jalaltajdini7959 2 ปีที่แล้ว

    Thanks, this was just what I wanted 😙

  • @loveen3186
    @loveen3186 2 ปีที่แล้ว

    amazing teacher

    • @ritvikmath
      @ritvikmath  2 ปีที่แล้ว

      Glad you think so!

  • @zwitter689
    @zwitter689 ปีที่แล้ว

    You have done a very good job here - Thank You! How about a list of youtube videos you have done? ( I just subscribed)

  • @JOHNREINKER
    @JOHNREINKER 9 หลายเดือนก่อน

    this video is goated

  • @mahdimoosavi2109
    @mahdimoosavi2109 2 ปีที่แล้ว

    dude I love you

  • @geogeo14000
    @geogeo14000 2 ปีที่แล้ว

    Very insightful thanks a lot

  • @zahratebiyaniyan1592
    @zahratebiyaniyan1592 ปีที่แล้ว

    You are GREAT!

  • @manishbolbanda9872
    @manishbolbanda9872 3 ปีที่แล้ว +14

    we get inner products of high dimensional data with out even converting data into high dimension, thats the conclusion i drew, correct me if am wrong.

    • @ritvikmath
      @ritvikmath  3 ปีที่แล้ว +5

      Yup, that's exactly the main point !

  • @asdadasasdsaasd
    @asdadasasdsaasd 6 หลายเดือนก่อน

    Nice explanation

  • @harshitlamba155
    @harshitlamba155 3 ปีที่แล้ว +2

    Hi Ritvik, this is an excellent explanation of the kernel trick concept. I have a doubt though. When we apply 2-degree polynomial trick to the dot product of the two vectors we will apply (a+b+c)**2 formula. Doing this will introduce a factor of 2 for a few terms. Is it ignored since it will just scale the dot product?

    • @durgeshmishra-fn6kx
      @durgeshmishra-fn6kx ปีที่แล้ว

      Ignore the coefficients (for example will have a term 2 xi^(1) xj^(1) so only consider xi^(1) xj^(1) and drop the 2 in the expansion you will get the match).

  • @e555t66
    @e555t66 ปีที่แล้ว

    Really explained well. If you want to get the theoretical concepts one could try doing the MIT micromasters. It’s rigorous and demands 10 to 15 hours a week.

  • @GAZ___
    @GAZ___ 8 หลายเดือนก่อน

    This is a good explanation, but I'm a bit confused about the terms on the bottom right corner. Did we reach this by squaring the parentheses And then taking? That's gonna result in the sum of the terms, so what did we do next, take each term independently and set it as a term?

  • @nimeesha0550
    @nimeesha0550 3 ปีที่แล้ว

    Great Job! Thank you soo much!!

  • @oscargonzalez-barrios9502
    @oscargonzalez-barrios9502 3 ปีที่แล้ว

    Wow, thank you so much!

  • @dungtranmanh7820
    @dungtranmanh7820 2 ปีที่แล้ว

    Thank you very much ❤, you save us a lot of time and effort, hope I can work with you someday

  • @lechx32
    @lechx32 ปีที่แล้ว

    Thank you. I just imagined what a hard time I would have if I tried to grind through all of this math on my own. It is not a good idea for a beginner)

  • @mainakmukherjee3444
    @mainakmukherjee3444 ปีที่แล้ว

    Why we calculate the the inner products ? I understand the data points need to be transformed in higher dimensions, so that they can be linearly sepereble. But why we calculate the 6 dimensional space for that ?, say we have 2d space (original feature space), we can transform it to 3d space to make things done.

    • @moatzmaloo
      @moatzmaloo 7 หลายเดือนก่อน

      Thats correct applyinf polynomial kernel quadratic for example will convert it to 3d dimensions but rdf can convert it to infinite dimensions

  • @maged4087
    @maged4087 2 ปีที่แล้ว

    i love you man. i am vt student. i wish that i knew this a month a go :(

  • @sumeyrakoc8926
    @sumeyrakoc8926 หลายเดือนก่อน

    You are hero

  • @arvinds7182
    @arvinds7182 2 ปีที่แล้ว

    quality👏

  • @MauroAndretta
    @MauroAndretta 6 หลายเดือนก่อน

    What is not clear for me is that, is the output of the kernel function a scalar?

  • @kevinmeyer3863
    @kevinmeyer3863 3 ปีที่แล้ว +1

    Hi Ritvik, in the end you have to sum the values in the 6-tuple to get the equivalent to the kernel output, right? (in order to get a proper scalar from the scalar product)

  • @victorsun9802
    @victorsun9802 3 ปีที่แล้ว +1

    Amazing explanation! Thanks for making these series of video on SVM. One question is that does kernel/kernel trick can also be applied on other model like logistic regression? I saw some online posts saying kernel can be applied on logistic regression but seems like it's very unpopular. Wonder if it's because the logistic regression and other models can't really get the dot product term, which makes computation expensive or other reasons? Thanks!

    • @durgeshmishra-fn6kx
      @durgeshmishra-fn6kx ปีที่แล้ว

      Little late but still, It can be applied to any ML algorithm, for example Linear regression (Kernelized) and so on, to include higher dimensional polynomial features instead of linear attributes.

  • @samuelrojas3766
    @samuelrojas3766 7 หลายเดือนก่อน

    I am still confused about how you developed the kernels in the first place. I know what they do but don't know how to obtain them without using the transformed space.

  • @ireoluwaTH
    @ireoluwaTH ปีที่แล้ว

    Your videos rank pretty high on the 'binge-ability' matrix...

  • @damialesh2109
    @damialesh2109 2 ปีที่แล้ว

    If we plugged in the kernel function output(similarity of our points in higher dimensional space) into the primal version of the cost function i.e use the similarity instead of the inputs themselves. Would it be equivalent to solving the dual function? Just a lot more inefficient?

  • @PF-vn4qz
    @PF-vn4qz 3 ปีที่แล้ว

    Thank you!

  • @manishbolbanda9872
    @manishbolbanda9872 3 ปีที่แล้ว +1

    what do you mean by Inner products of original data?

  • @walidghazouani9427
    @walidghazouani9427 2 ปีที่แล้ว

    what is xj exactly? am i understanding it right if i can consider it as the triangle data point and xi are the x data points...? so xj is like feature variables within our data...?

  • @Kirill-xp9jq
    @Kirill-xp9jq 3 ปีที่แล้ว

    What is the purpose of finding the relationship between two separate vectors? Why can't you just take the polynomial of a vector with respect to itself (xi_1^T xi_1+c)^2? Wouldn't your number of terms just blow up when you have to find K(xa,xb) for every a and b in X?

  • @Fat_Cat_Fly
    @Fat_Cat_Fly ปีที่แล้ว

    magic

  • @thirdreplicator
    @thirdreplicator 3 ปีที่แล้ว +1

    Ritvik for president!

  • @hussameldinrabah5018
    @hussameldinrabah5018 2 ปีที่แล้ว

    why do we add 1 term to the dot product in Kernel?

    • @richardbloemenkamp8532
      @richardbloemenkamp8532 2 ปีที่แล้ว

      He did not derive the kernel. He showed that if you use (1 + )^2 as a kernel, then if you work it out, you get exactly the same terms as when you explicitly compute (except for a few factors 2). If you would take the kernel ()^2 then you would not get the same terms. Probably some clever person invented the kernel: (1 + )^2 , but it is not explained here how he/she found it. Note there are also other kernel functions that work well for SVM, but with different basis functions.

  • @murilopalomosebilla2999
    @murilopalomosebilla2999 3 ปีที่แล้ว

    Thanks!

  • @iidtxbc
    @iidtxbc 3 ปีที่แล้ว +1

    Why does 1 mean in the transformed matrix?

    • @ritvikmath
      @ritvikmath  3 ปีที่แล้ว +2

      1 is just for the "intercept". It's like the "b" term in the linear equation "y=mx+b"

  • @mattkunq
    @mattkunq 2 ปีที่แล้ว

    Can someone elaborate how a kernal exactly does that? At the end of the day, we still need the higher demsion data no? I'm confused.

  • @revycayolivia
    @revycayolivia 3 ปีที่แล้ว

    sorry may I ask? how if we have 4/5 class ? how we describe or using it?

  • @ccuuttww
    @ccuuttww 3 ปีที่แล้ว +1

    The Phi is always impossible to compute directly
    If u don't mind I can give u a simple kernel PCA example to help viewers
    because this concept is hard to understand if u are new to this topics

    • @ritvikmath
      @ritvikmath  3 ปีที่แล้ว

      sure! any resources are always welcome

  • @KernaaliKehveli
    @KernaaliKehveli 3 ปีที่แล้ว

    Hey, I know your videos are according to the current theme, but would be great to have a projector matrix/subspace video at some point in the future! Keep up the great content

  • @skelgamingyt
    @skelgamingyt ปีที่แล้ว

    india se ho kya bhai?

  • @nuclearcornflakes3542
    @nuclearcornflakes3542 ปีที่แล้ว

    let him cook