Oxford University Admission Interview Tricks

แชร์
ฝัง
  • เผยแพร่เมื่อ 24 พ.ย. 2024

ความคิดเห็น • 6

  • @pierrettebalazut9407
    @pierrettebalazut9407 10 วันที่ผ่านมา

    Enfin j'ai compris !
    Merci

  • @shmuelzehavi4940
    @shmuelzehavi4940 15 วันที่ผ่านมา +3

    Another approach:
    The original equation is:
    x + y = 6 √xy
    y can't be zero. Therefore, by dividing this equation by y we obtain:
    x/y + 1 = 6 √(x/y)
    We denote z = √(x/y) and obtain the following quadratic equation:
    z^2 - 6z + 1 = 0
    Or:
    z^2 - 6z + 9 = (z - 3)^2 = 8
    Therefore we obtain 2 real roots:
    z = 3 ± 2 √2 = √(x/y)
    By squaring this result we obtain:
    x/y = 17 ± 12 √2

  • @shmuelzehavi4940
    @shmuelzehavi4940 14 วันที่ผ่านมา

    Following the solution presented in this video clip, the quadratic equation to be solved is:
    u^2 - 34u + 1 = 0
    The classic solution is:
    u = (34 ± √(34^2 - 4)) / 2
    Therefore,
    u = (34 ± √(34^2 - 2^2 )) / 2
    = ( 34 ± √( (34 + 2) (34 - 2) ) ) / 2
    = (34 ± √(36×32)) / 2
    = (34 ± √(2 (6×4)^2) ) / 2
    = (34 ± √(2×24^2)) / 2
    = (34 ± 24√2) / 2
    = 17 ± 12√2

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 15 วันที่ผ่านมา +1

    x+y=6Sqrt[xy] x/y=17±12Sqrt[2]

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 13 วันที่ผ่านมา

    x+y=6sqrt(xy)
    Divide by sqrt(xy):
    sqrt(x/y)+sqrt(y/x)=6
    Let t=sqrt(x/y) --> sqrt(y/x)=1/t
    Thus t+1/t=6 --> t²-6t+1=0
    t=½[6±sqrt(32)]
    =3±2sqrt(2)
    x/y=t²
    =17±12sqrt(2)