Can you find area of the Green Semicircle? | (Triangle) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ก.พ. 2025

ความคิดเห็น • 46

  • @mahfoozkhan9840
    @mahfoozkhan9840 2 หลายเดือนก่อน +3

    This is a very good question and enjoyed it

    • @PreMath
      @PreMath  2 หลายเดือนก่อน +1

      Glad to hear that!
      You are very welcome!
      Thanks for the feedback ❤️

  • @jimlocke9320
    @jimlocke9320 2 หลายเดือนก่อน +7

    At 6:00, the algebra is more straightforward if we observe that ΔABC and ΔCDO are similar. The equation OE/AE = CD/OD gets replaced by BC/AB = CD/OD. We substitute BC = 3, AD = 4, CD = 3 - r and OD = r to get 3/4 = (3 - r)/r and cross multiply: 3r = 4(3 - r), 3r = 12 - 4r, 7r = 12 and r = 12/7. Area of semicircle = (1/2)πr² = (1/2)π(12/7)² = 72π/49, as PreMath also found.

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @MarieAnne.
    @MarieAnne. 2 หลายเดือนก่อน

    Once we've found that AB = 4 (at 2:18), we can consider triangles AOB and BOC
    OE is perpendicular to AB, therefore △AOB has base AB = 4 and height OE = r
    OD is perpendicular to BC, therefore △BOC has base BC = 3 and height OD = r
    Area(△AOB) + Area(△BOC) = Area(△ABC)
    (1/2 * 4 * r) + (1/2 * 3 * r) = 6
    7r/2 = 6
    r = 12/7
    Area(semi-circle) = 1/2 πr² = 1/2 π(144/49) = *72π/49*

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 2 หลายเดือนก่อน +1

    Very good
    That’s wonderful
    Thanks Sir
    Thanks PreMath
    We are learning more about math.
    ❤❤❤❤

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      I'm glad you are enjoying the videos! ❤️
      Thanks for the feedback ❤️

  • @MohamedMd-l5d
    @MohamedMd-l5d 2 หลายเดือนก่อน

    Thank you very much sir

  • @marioalb9726
    @marioalb9726 2 หลายเดือนก่อน +2

    A = 6 cm² = ½bh (given data)
    b = 2A/h = 2A/3 = 4 cm
    c² = b² + h² --> c = 5 cm
    (4-r)/cosα + (3-r)/sinα = 5
    5/4 (4-r)+ 5/3 (3-r) = 5
    5 - 5/4 r + 5 - 5/3 r = 5
    5/4 r + 5/3 r = 5
    ¼ r + ⅓ r = 1
    7r = 12 --> r = 12/7 cm
    A = ½πr² = 4,616 cm² ( Solved √ )

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @himo3485
    @himo3485 2 หลายเดือนก่อน +2

    3*AB/2=6 AB=4 OE=EB=r AE=4-r
    r/(4-r)=3/4 4r=3(4-r) 7r=12 r=12/7
    Green Semicircle area = 12/7*12/7*π*1/2=72π/49

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @quigonkenny
    @quigonkenny 2 หลายเดือนก่อน +1

    Triangle ∆ABC:
    A = bh/2 = AB(BC)/2
    6 = AB(3)/2
    3AB = 2(6) = 12
    AB = 12/3 = 4
    Draw radii OD and OE. As AB and BC are tangent to semicircle O at E and D respectively, then ∠OEB = ∠BDO = 90°. Since ∠EBD = 90°, then ∠DOE must equal 90° as well, and OEBD is a swuare with side length OD = OE = r.
    As ∠ODC = ∠ABC = 90° and ∠C is common, ∆ODC and ∆ABC are similar triangles. As ∠AEO = ∠ABC = 90° and ∠A is common, ∆AEO is also similar to ∆ABC, and thus also similar to ∆ODC.
    OE/AE = DC/OD = BC/AB
    r/AE = DC/r = 3/4
    3AE = 4r => AE = 4r/3
    3r = 4DC => DC = 3r/4
    AE + EB = AB
    4r/3 + r = 4
    7r/3 = 4
    r = 4(3/7) = 12/7
    Semicircle O:
    A = πr²/2 = π(12/7)²/2 = (144π/49)/2
    [ A = 72π/49 ≈ 4.616 sq units ]

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 2 หลายเดือนก่อน +1

    Something else:
    Let's use an orthonormal center B and first axis (BA). We have B(0; 0) A(4; 0) C(0; 3), as AB = (2.area of ABC)/BC = 12/3 = 4.
    VectorAC(-4; 3), then A parametric equation of (AC) is x = 4 -4.k; y = 3.k. So O(4 -4.k; 3.k) for a certain real k.
    Distance from O to (BC) = OD = abscissa of O = 4 -4.k; and distance from O to (AB) = OE = ordinate of O = 3.k.
    These two distances are equal (to the radius R of the circle), so 4 -4.k = 3.k and so k = 4/7, and the radius of the circle is R = 4 -4.(4/7) = 3.(4/7) = 12/7.
    Finally, the green area is then Pi. (R^2).(1/2) = (72/49).Pi

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @alexniklas8777
    @alexniklas8777 2 หลายเดือนก่อน +1

    Треугольник египетский
    (3-r)/3=r/4; r= 12/7
    S= πr^2/2=π(12/7)^2/2= 4,62

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @jamestalbott4499
    @jamestalbott4499 2 หลายเดือนก่อน +1

    Thank you!

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Glad you found it helpful!
      You are very welcome!
      Thanks for the feedback ❤️

  • @MrPaulc222
    @MrPaulc222 2 หลายเดือนก่อน

    AB = 4, making AC = 5 due to 3,4,5.
    ODBE is a square with sides r.
    CDO is similar to ABC.
    Rough estimate for r is 2 or a little under.
    (3-r)/r = 3/4
    12-4r = 3r
    12-7r=0.
    r=12/7
    Full circle area is (144/49)pi, so semicircle is (72/49)pi
    4.62

  • @prossvay8744
    @prossvay8744 2 หลายเดือนก่อน +2

    Green semicircle area=1/2(12/7)^2(π)=72π/49=4.62 square units.❤❤❤

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @raghvendrasingh1289
    @raghvendrasingh1289 2 หลายเดือนก่อน

    ,👍
    (1/2)(3 AB) = 6
    AB = 4
    we take reflection of triangle in AC , we obtain a kite with area 12 and semi perimeter 7
    r = area/semiperimter
    =12/7
    semi circle area = (π/2)(144/49) = 72 π/49

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @ekoi1995
    @ekoi1995 หลายเดือนก่อน

    triangle area = 6
    height = 3
    6=1/2 * B * 3
    B=4
    let line be y=3/4 * x + b
    y intercept = (0,3)
    x intercept = (4,0)
    sub (0,3) -> y=3/4x + b
    3=3/4 * (0) + b
    b=3
    y=(3/4)x+3
    let equation of circle = (x+h)^2+(y-k)^2=(r)^2 because the circle is located in the 2nd quadrant
    h=k=r because the horizontal and vertical radii are equal
    (x+r)^2+(y-r)^2=(r)^2
    for y=(3/4)x+3, let -x=y; this is the point found in the line which is the center of the circle
    -x=(3/4)x+3=-12/7
    take the absolute = 12/7
    this is the radius of the circle
    r= 12/7
    (x+12/7)^2+(y-12/7)^2=(12/7)^2
    Area of the circle = 144/49 * pi
    Area of the semicircle = 72/49 * pi

  • @cyruschang1904
    @cyruschang1904 2 หลายเดือนก่อน

    The triangle area = 6 tells us that it's a 3 - 4 - 5 triangle
    3 = 3r/4 + r = 7r/4
    r = 12/7
    The area of the half circle = (12/7)^2 x π ÷ 2 = 72π/49

  • @sergioaiex3966
    @sergioaiex3966 2 หลายเดือนก่อน +1

    Solution:
    A ∆ABC = ½ b h
    6 = ½ b 3
    3b = 12
    b = 4
    Proportion ∆ ABC and ∆ ODC (the triangles are similar)
    4/3 = r/3-r
    12 - 4r = 3r
    12 = 7r
    r = 12/7
    Green Semicircle Area (GSA) = ½ π r²
    GSA = ½ π (12/7)²
    GSA = ½ π 144/49
    GSA = 72π/49 Square Units ✅
    GSA ≈ 4.6162 Square Units ✅

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @phungpham1725
    @phungpham1725 2 หลายเดือนก่อน +1

    1/ AB= 4
    2/ Connect OB
    Consider the two triangle COB and AOB:
    1/2 (3r+4r) =6
    --> 7r/2= 6
    -> r=12/7
    Area of the semi green circle= pi/2 x sq(12/7) = 72pi/49=4.62 sq units😅😅😅

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @ChuzzleFriends
    @ChuzzleFriends 2 หลายเดือนก่อน +1

    I came back.
    A = (bh)/2
    6 = (3b)/2
    3b = 12
    b = 4
    So, AB = 4.
    Draw radii DO & EO. Label DO = EO = r.
    By the Tangent Line to Circle Theorem, ∠BDO & ∠BEO are right angles.
    By the Two-Tangent Theorem, BD = BE.
    So, BDOE is a square. BD = BE = r.
    So, CD = BC - BD = 3 - r & AE = AB - BE = 4 - r.
    Label α & β as complementary angles.
    Let m∠A = α. Then, m∠AOE = m∠C = β.
    Therefore, m∠COD = α.
    So, △ABC ~ △AEO ~ △CDO by AA.
    By definition of similarity, (4 - r)/r = r/(3 - r).
    (4 - r) = r²/(3 - r)
    (4 - r)(3 - r) = r²
    r² = (4 - r)(3 - r)
    r² = 12 - 3r - 4r + r²
    r² = r² - 7r + 12
    0 = -7r + 12
    7r = 12
    r = 12/7
    Find the area of the semicircle.
    A = (πr²)/2
    = [π(12/7)²]/2
    = [π(144/49)]/2
    = (144π)/98
    = (72π)/49
    So, the area of the green shaded semicircle is (72π)/49 square units (exact), or about 4.62 square units (approximation).

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 2 หลายเดือนก่อน +1

    My way of solution ▶
    A(ΔABC)= [AB]*[BC]/2
    A(ΔABC)= 6 square units
    [BC]= 3

    6= 3*[AB]/2

    [AB]= 4 length units
    b) By considering the green semicircle we can write:
    [OD]= [OE]= r
    ∠COD= ∠CAB
    ∠ODC= ∠ABC
    ∠DCO= ∠BCA

    ΔODC ~ ΔABC

    [OD]/[AB] = [DC]/[BC] = [CO]/[CA]
    [DB]=[OE]= r

    [DC]= 3-r

    r/4= (3-r)/3
    3r= 12-4r
    7r= 12
    r= 12/7
    Agreen= πr²/2
    Agreen= π*(12/7)²*(1/2)
    Agreen= (72/49)π
    Agreen ≈ 4,62 square units ✅

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 2 หลายเดือนก่อน +2

    S=72π/49≈4,62

    • @PreMath
      @PreMath  2 หลายเดือนก่อน +1

      Excellent!
      Thanks for sharing ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 2 หลายเดือนก่อน +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) Triangle Area (TA) = 12 / 2 ; TA = (B * h) / 2 ; 6 = (B * 3) / 2 ; B * 3 = 12 ; B = 12 / 3 ; B = 4
    02) Triangle [ABC] with Sides (3 ; 4 ; 5)
    03) OE = OD = EB = BD = R
    04) [BDOE] is a Square with Area = R^2
    05) AE = (4 - R)
    06) CD = (3 - R)
    07) CD / R = R / AE
    08) (3 - R) / R = R / (4 - R)
    09) (3 - R) * (4 - R) = R^2
    10) 12 - 3R - 4R + R^2 = R^2
    11) 12 - 7R = 0
    12) 7R = 12
    13) R = 12 / 7
    14) Green Semicircle Area (GSA) = (Pi * R^2) / 2
    15) GSA = (Pi * (12/7)^2) / 2
    16) GSA = 144Pi / 98
    17) GSA = 72Pi/49
    18) GSA ~ 4,62
    Thus,
    OUR BEST ANSWER :
    Green Semicircle Area equal to 72Pi/49 Square Units.

    • @PreMath
      @PreMath  2 หลายเดือนก่อน +1

      Excellent!
      Thanks for sharing ❤️

  • @Democraps_are_narrow-minded
    @Democraps_are_narrow-minded 2 หลายเดือนก่อน

    Is there another way if dont use similar trianngle

    • @saaidsiddiqui6738
      @saaidsiddiqui6738 2 หลายเดือนก่อน

      Yes, use trigonometry.
      Tan(alpha) = r/(4-r) =3/4
      That gives r = 12/7

  • @imetroangola17
    @imetroangola17 2 หลายเดือนก่อน +2

    *SIMPLE Solution:*
    AB×BC/2 = [ABC]→AB×3/2 =6 → AB=4.
    [OBA] + [BOC] = [ABC]
    r×AB/2 + r×BC/2 = 6
    4r + 3r = 12 → *r=12/7*
    Therefore, the area S of the semicircle is given by:
    S = πr²/2 → *S = 72π/49 square units*

    • @PreMath
      @PreMath  2 หลายเดือนก่อน +1

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 2 หลายเดือนก่อน +2

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    From the given area of the right triangle ABC and the given side length BC we can conclude:
    A(ABC) = (1/2)*AB*BC ⇒ AB = 2*A(ABC)/BC = 2*6/3 = 4
    The right triangles AEO and CDO are similar (∠AEO=∠CDO=90° and ∠EAO=∠COD). With r being the radius of the semicircle we obtain:
    EO/AE = CD/DO
    EO/(AB − BE) = (BC − BD)/DO
    EO/(AB − DO) = (BC − EO)/DO
    r/(4 − r) = (3 − r)/r
    r² = (3 − r)(4 − r)
    r² = 12 − 7r + r²
    0 = 12 − 7r
    ⇒ r = 12/7
    Now we are able to calculate the area of the green semicircle:
    A(semicircle) = πr²/2 = π*(12/7)²/2 = π*(144/49)/2 = (72/49)π ≈ 4.616
    Best regards from Germany

    • @PreMath
      @PreMath  2 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @rudychan8792
    @rudychan8792 หลายเดือนก่อน

    Are∆ = (1/2)•4•r + (1/2)•3•r = 6
    7•r = 12 ➡️ r = 12/7
    No Need Square Equation. 😉
    Complicated.
    Semicircle = (1/2)•π•r² = (0.5)•(3.1416)•(12/7)² = 4.616