Data Lakehouses Explained

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 พ.ย. 2024

ความคิดเห็น • 54

  • @dushyantchaudhry4654
    @dushyantchaudhry4654 4 หลายเดือนก่อน +2

    As a lay person I always found the idea of a restaurant the best way to understand applications.
    Waiter : Web Server
    Chef : Application
    Store Manager : DBMS
    Storage Racks : SSD Library

  • @lukebobs
    @lukebobs ปีที่แล้ว +10

    Loading dock example was a great way to illustrate the concept, thanks!

  • @HARRISSAMUELDINDI
    @HARRISSAMUELDINDI ปีที่แล้ว +12

    In future eposiode , can you cover comparison between Data Lake & Data Mesh ?

  • @vinitsunita
    @vinitsunita ปีที่แล้ว +8

    In a nutshell, data lakes stores all kind of data coming into the organization in cost effective manner as it utilises cloud object storage which is infinitely scalable.. It is equivalent to data swamps as data stroed inside also can be inaccurate, duplicate or inaccurate data which can not be used for querying or for Business Intelligence.
    In order to use this data, Data is cleaned first and then loaded into Data Warehouse through ETL process. It is easily queryable and can be used for BI and report generation. But it has two disadvantages :-
    1. The cost of data warehouse is too high
    2. Apps wants to consume fresh data may not get it from Data warehouse as it ETL process takes time to load data into warehoulse.
    Hence to solve the shortcomings of both Data Lake and Data Warehouse, concept of data lakehouse is introduced

  • @surfh3r0
    @surfh3r0 ปีที่แล้ว +2

    nice explanation, not too technical but really clear

  • @rollopost
    @rollopost 11 หลายเดือนก่อน

    ok used bard to help: Data Lakehouse:
    Unifies the advantages of both data lakes and data warehouses, creating a single platform for all data needs.
    Stores all data, structured and unstructured, in low-cost object storage like a data lake.
    Applies metadata and schema to the data, like a data warehouse, enabling efficient querying and analysis.
    Offers cost-effective storage, flexibility for exploration, and structured data for analysis.

  • @SmileyVideography
    @SmileyVideography 9 หลายเดือนก่อน

    Amazing video explaining the Data structure using simple method

  • @zomborya
    @zomborya ปีที่แล้ว +6

    Great video Luv. I like the analogy of food service prep that you used also.

  • @joaosousa19997
    @joaosousa19997 11 หลายเดือนก่อน

    The video is very clear in explaining the concepts. But one question that comes to my mind is in which situation would a data warehouse still be viable as a final destination for some of the tables built. Could a use case be optimized query performance that the lakehouse may lake?

  • @bloom6874
    @bloom6874 8 หลายเดือนก่อน

    brilliant video. best explained data lakehouse in almost 8 minutes. Thank you :)

  • @ChanceMinus
    @ChanceMinus 8 หลายเดือนก่อน

    Brilliant analogy! Invaluable info. Thank you.

  • @MrVucanDo
    @MrVucanDo 11 หลายเดือนก่อน

    Excellent presentation about DataLakeHouse

  • @richardallan9476
    @richardallan9476 ปีที่แล้ว +3

    Great vid - would love to know how a data lakehouse works though

    • @aggarwaluv
      @aggarwaluv ปีที่แล้ว +2

      Data lakehouse architecture explainer coming soon!

  • @glowiever
    @glowiever ปีที่แล้ว +4

    any future videos showing real life examples?

  • @tugrularslan542
    @tugrularslan542 ปีที่แล้ว

    Hey ,
    very cleary and simple explanation. One big question from me , then i used both termin's synonymous,. And I think is not realy correct. Is the statging area equal to the Data lake, even not, what is the main difference between thus both ?
    Thanks

  • @rogeriotalmeida
    @rogeriotalmeida ปีที่แล้ว +1

    Great video Luv! Amazing explanation!

  • @YusufDemir-k5d
    @YusufDemir-k5d 9 หลายเดือนก่อน

    Awesome and very clear video! By the way, how can you write backwards? 😅

  • @feka2188
    @feka2188 ปีที่แล้ว

    - 5:43 the data doesn't lose its value per se (on the same way at least as food does when it expires). E.g. if it's not "found" (not labelled so nobody knows what it is) and when it is recognized that it's a duplicate of something else are not the same things. In the first case you don't know what the value is, and in the 2nd case the actual/original data has the same value as before and the copy of it has no value.
    - well, when it comes to have a lakehouse, the restaurant could force the supplier to dock at a special place to load ONLY vegetables or ONLY meat, so reducing the amount of "labeling" (obviously it has some additional costs to build different docks and certain restaurants (small ones) may not be able to afford that) so on the same way a data lake could apply some data warehouse "principles" to increase the structured-ness and the possibility of "governance".
    - It reminds me the sci-fi writer Stanislav Lem's novel where he describes how the wireless communication was "invented": "the engineers made the diameter of the wire by which the communication was done smaller... and then even smaller... and then a bit more... and at one point... there was no wire..." 🙂

  • @Luke_Skywalker_1
    @Luke_Skywalker_1 ปีที่แล้ว

    Excellent video.. thanks

  • @genai142Kumar
    @genai142Kumar ปีที่แล้ว

    Great analogy, thanks Luv!!

  • @LifeOfPenguin
    @LifeOfPenguin 8 หลายเดือนก่อน

    Can you please explain about data mesh??

  • @jakestandley7668
    @jakestandley7668 11 หลายเดือนก่อน

    Excellent video. Thanks!

  • @moralstoryforkids.1981
    @moralstoryforkids.1981 5 หลายเดือนก่อน

    It was a wonderful explaination !! Thanks !

  • @yairking8155
    @yairking8155 ปีที่แล้ว

    Gran forma de explicar con simpleza el uso que le podemos dar a los datos

  • @valeriaplascencia1817
    @valeriaplascencia1817 9 หลายเดือนก่อน

    Good analogy thx for explain it !

  • @saulfeliz72
    @saulfeliz72 10 หลายเดือนก่อน

    Am I the only one mesmerized by how he can write backwards, while talking about complex concepts?

    • @thereforeandres
      @thereforeandres 7 หลายเดือนก่อน

      Haha, he doesn't. The video is flipped in post processing.

    • @kahnfatman
      @kahnfatman 24 วันที่ผ่านมา

      He works at IBM and learned that feat in an effective human communication crash course

  • @HJK0900
    @HJK0900 5 หลายเดือนก่อน

    Absolutely loved this!

  • @BFarmer820
    @BFarmer820 ปีที่แล้ว

    You are the Best Luv!

  • @colbysayshi
    @colbysayshi 10 หลายเดือนก่อน

    Good video. keep em' coming!

  • @DataScienceAI-rf4kx
    @DataScienceAI-rf4kx 9 หลายเดือนก่อน

    Summary:
    We encounter various types of data-unstructured, semi-structured, and structured-in our data lakes, sourced from different databases and various channels.
    Our need extends to powerful dashboards, business intelligence, and reports. Subsequently, we establish an ETL path to transform this data into our enterprise warehouses, which contain domain-specific data tailored for particular use cases.
    However, two critical issues arise concerning data governance and data quality, creating what can be likened to data swarms.
    To address these challenges, developers contemplate a solution that combines both aspects, known as a lake house. This approach provides a cost-effective, flexible, and high-performance structure, bundling everything into one cohesive system. This integrated system can be utilized for both business intelligence and machine learning processes.

  • @clairebear8953
    @clairebear8953 6 หลายเดือนก่อน

    great video *^^* thank you!

  • @ericmichiels7776
    @ericmichiels7776 ปีที่แล้ว

    Great metaphore ! Well done !

  • @kahnfatman
    @kahnfatman 24 วันที่ผ่านมา

    To the man in the mirror speaking to the outside world... Writing all flipped letters for us to understand -- thank you

  • @hashini1575
    @hashini1575 9 หลายเดือนก่อน

    Thank u very much❤❤

  • @tyrojames9937
    @tyrojames9937 ปีที่แล้ว +1

    REAL-GOOD VIDEO❗😃

  • @piyushkalbande8136
    @piyushkalbande8136 ปีที่แล้ว

    If the data Is coming from the api and I want to store it in the database and I wanted to ask how will give and access to data load like an validation

  • @zulfiqarjunejo93
    @zulfiqarjunejo93 11 หลายเดือนก่อน

    I would like to focus on my meal really :D
    JK. Amazing video. Keep up the good work.

  • @LiuNancy-x2c
    @LiuNancy-x2c ปีที่แล้ว

    Great vid!

  • @oneofpro
    @oneofpro ปีที่แล้ว

    Thanks

  • @fbedoy
    @fbedoy 4 หลายเดือนก่อน

    Great!

  • @nosh3019
    @nosh3019 ปีที่แล้ว

  • @GeorgeCliffe
    @GeorgeCliffe ปีที่แล้ว +1

    Is he writing backwards? How is this filmed??

  • @sarazehraoui1758
    @sarazehraoui1758 ปีที่แล้ว

    The god bless you

  • @John-jz1wf
    @John-jz1wf 10 หลายเดือนก่อน

    All the time i am thinking how is writing like this , its better to watch it at 1.5 speed

  • @harris5140
    @harris5140 5 หลายเดือนก่อน

    It would be more efficient to use graphics instead of the painfully slow drawings

    • @kahnfatman
      @kahnfatman 24 วันที่ผ่านมา

      No -- it reflects human thought process.

  • @heykike
    @heykike 6 หลายเดือนก่อน

    I wish these videos went straight to the topic.... meals? Trucks?.... im out

  • @andyvandenberghe6364
    @andyvandenberghe6364 9 หลายเดือนก่อน

    data lake is such a useless term. what does this mean in tech terms ?