Entrance Exam | A tricky exponential equation

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 พ.ย. 2024

ความคิดเห็น • 36

  • @mikeburns6603
    @mikeburns6603 หลายเดือนก่อน +7

    There are dozens of these videos where they always have a solution of the Lampert W function. They are trying to make the W function be one of the primary functions. But you could do the same thing with the zeta, gamma or Bessel functions.

  • @ManojkantSamal
    @ManojkantSamal หลายเดือนก่อน +23

    Respected Sir, Good evening. Pls get us the knowledge of "lambert w function "

    • @bananafax
      @bananafax หลายเดือนก่อน

      I'm also kind of new to this, but I checked Wikipedia and found this: "Although it was widely believed that the Lambert ⁠ W⁠ function cannot be expressed in terms of elementary (Liouvillian) functions, the first published proof did not appear until 2008." Long story short, you can plot it and identify useful patterns with it, but the Lambert W function is its own thing that cannot be expressed in different terms. You can (and should) use it whenever you want to solve for a with a*e^(a).

    • @trwent
      @trwent หลายเดือนก่อน

      I do not think it has anything to do with Miranda!!

  • @joewhitehead7045
    @joewhitehead7045 หลายเดือนก่อน +5

    I went about this one a different way and got a different way of representing the answer:
    xlnx=ln25
    lnx=ln25/x
    x=e^(ln25/x)
    ln25=(ln25/x) e^(ln25/x)
    W(ln25)=ln25/x
    x=ln25/W(ln25)
    On (approximate) calculation this gives the same value as e^W(ln25) so it appears to be a valid solution.

    • @YAWTon
      @YAWTon หลายเดือนก่อน +1

      It not only appears to be the same. It actually is the same.

    • @joewhitehead7045
      @joewhitehead7045 หลายเดือนก่อน

      @@YAWTon Took me a hot minute to work it out exactly but yeah i see it now

  • @vencik_krpo
    @vencik_krpo หลายเดือนก่อน +1

    And again, I chose a bit different approach:
    x^x = 25 / both sides to the power of 1/x gives
    x^1 = 25^(1/x) / times 1/x gives
    1 = 1/x . 25^(1/x) / times ln25 and note that 25 = e^ln25
    ln25 = ln25/x . (e^ln25)^(1/x) , i.e.
    ln25 = ln25/x . e^(ln25/x) / now apply Lambert’s W:
    W(ln25) = ln25/x , so
    x = ln25/W(ln25)
    (which is equal to your result.)

  • @paolovolante
    @paolovolante หลายเดือนก่อน +1

    I gave this question to AI Claude 3.5 Sonnet and this was its answer:
    "The equation x^x = 25 can be solved analytically using the Lambert W function. Here's the step-by-step solution:
    Start with x^x = 25
    Take the natural log of both sides: ln(x^x) = ln(25)
    Using the properties of logarithms: x * ln(x) = ln(25)
    Multiply both sides by 1/x: ln(x) = ln(25) / x
    Multiply both sides by -1: -ln(x) = -ln(25) / x
    Take e to the power of both sides: e^(-ln(x)) = e^(-ln(25) / x)
    Simplify the left side: 1/x = e^(-ln(25) / x)
    Take the reciprocal of both sides: x = e^(ln(25) / x)
    This is in the form of y = e^(1/y), which has the solution y = e^W(1), where W is the Lambert W function.
    In our case, we have x = e^(ln(25) / x), so the solution is: x = e^W(ln(25)) "

  • @parkershaw8529
    @parkershaw8529 หลายเดือนก่อน +1

    I have a L func, L(x)=x^x, so the solution of the above equation is x=inverse L(25).

  • @ruhi435
    @ruhi435 หลายเดือนก่อน +4

    Hello sir
    Sir, I request can you please make a video for lamber W function with its concept

    • @YAWTon
      @YAWTon หลายเดือนก่อน

      On Prime Newtons channel you can find several good clips, e.g. the one with the title "Lambert W Function". And you can also find information in the Wikipedia with the same title.

  • @YAWTon
    @YAWTon หลายเดือนก่อน +11

    Lots of time wasted in this clip to stretch an otherwise 1-2 minutes story into 10 minutes of repeating the same trivialities again and again, without ever giving a proper explanation of Lambert's W function. Interesting subject, but very disappointing clip.

  • @hwaansswaanh3511
    @hwaansswaanh3511 หลายเดือนก่อน

    i really love the lambert w function, also w(xlnx)=lnx just to simplify

  • @michellefranklin3182
    @michellefranklin3182 หลายเดือนก่อน +1

    Thanks for this.

  • @SALogics
    @SALogics หลายเดือนก่อน

    By ispection 2

  • @justinwooten9998
    @justinwooten9998 หลายเดือนก่อน

    x^x = a, x = e^(W(ln(a))) for x > 0.

  • @menw7470
    @menw7470 หลายเดือนก่อน +2

    Does not make sense e^W(ln 25), how do you work this out?

  • @inhvanta1299
    @inhvanta1299 หลายเดือนก่อน

    Hello
    you can solve the following equation:
    xˣ=2x

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 หลายเดือนก่อน

    (x ➖ 5x+5).

  • @Why553-k5b_1
    @Why553-k5b_1 หลายเดือนก่อน

    before watching: xln(x)=ln(25)
    ln(x)e^ln(x)=ln(25)
    ln(x)=W(ln(25)
    x=e^W(2ln(5))

  • @astroide-fs9uf
    @astroide-fs9uf หลายเดือนก่อน +2

    You showoff the lambert function too much

  • @Galmok18
    @Galmok18 หลายเดือนก่อน

    I saw no analytical solution, just a partial analytical solution. And you end up with approximating the solution numerically, which defeats the whole point of video you made. You could have solved this numerically with the initial equation.

  • @chenzenyu2378
    @chenzenyu2378 หลายเดือนก่อน

    其實可以不一定要用朗伯函數😅

  • @fahadmshasan7874
    @fahadmshasan7874 หลายเดือนก่อน

    Please explaine,why in e^lnx, e and ln cancel out??🤔🤔🙏🙏❤❤❤

    • @ciathing4654
      @ciathing4654 หลายเดือนก่อน

      e^ln x is equal to x.
      just try e^ln 7 is equal to 7.
      why use e^ln x? because it's like an identity that e^ln x is equal to x. if your equality in left side is ln x, just use e as the base for both side than e^ln x = x to get easy x.

    • @fahadmshasan7874
      @fahadmshasan7874 หลายเดือนก่อน

      @@ciathing4654 Thanks👍❤️, But can we prove it other than, y=e^ln x ??Like directy?🤔

    • @elessarstrider5210
      @elessarstrider5210 หลายเดือนก่อน +1

      Definition of the inverse function. You're welcome.

    • @Viki13
      @Viki13 หลายเดือนก่อน

      ​@@elessarstrider5210exactly, that's the "proof" needed

  • @josephcamba9370
    @josephcamba9370 หลายเดือนก่อน +5

    this is not intuitive. this type of stuff turns most people away from math.

    • @themightyquinn100
      @themightyquinn100 หลายเดือนก่อน

      Not everything can be understood intuitively in mathematics. The basic stuff yes, but not always the advanced topics.

    • @asdbanz316
      @asdbanz316 26 วันที่ผ่านมา

      ​@@themightyquinn100for me it looks like lazy solution IMO. Never heard about lambert function before so it's a black box for me. But if it's calculated already, then sure, why not. You should apply it

    • @themightyquinn100
      @themightyquinn100 26 วันที่ผ่านมา

      @@asdbanz316 I'm not knowledgeable on this topic but it might be the only general solution. And the calculation probably requires a numerical algorithm.

  • @АндрейАнцышкин
    @АндрейАнцышкин หลายเดือนก่อน

    😮 маньяки!

  • @payoo_2674
    @payoo_2674 หลายเดือนก่อน

    x^2 = 3^x
    ln(x^2) = ln(3^x)
    2*ln|x| = x*ln(3) ===> two cases
    1st case: x > 0
    2*ln(x) = x*ln(3)
    ln(x)*x^(-1) = ln(3)/2
    ln(x)*e^ln(x^(-1)) = ln(3)/2
    ln(x)*e^(-ln(x)) = ln(3)/2
    -ln(x)*e^(-ln(x)) = -ln(3)/2
    W(-ln(x)*e^(-ln(x))) = W(-ln(3)/2)
    -ln(x) = W(-ln(3)/2)
    ln(x) = -W(-ln(3)/2)
    x = e^(-W(-ln(3)/2)) ===> -ln(3)/2 < -1/e ===> no real solutions
    2nd case: x < 0
    2*ln(-x) = x*ln(3)
    ln(-x)*x^(-1) = ln(3)/2
    -ln(-x)*x^(-1) = -ln(3)/2
    ln(-x)*(-x)^(-1) = -ln(3)/2
    ln(-x)*e^ln((-x)^(-1)) = -ln(3)/2
    ln(-x)*e^(-ln(-x)) = -ln(3)/2
    -ln(-x)*e^(-ln(-x)) = ln(3)/2
    W(-ln(-x)*e^(-ln(-x))) = W(ln(3)/2)
    -ln(-x) = W(ln(3)/2)
    ln(-x) = -W(ln(3)/2)
    -x = e^(-W(ln(3)/2)
    x = -e^(-W(ln(3)/2)) ===> ln(3)/2 > 0 ===> 1 real solution
    x = -e^(-W₀(ln(3)/2)) = -0.686026724536251319713006846182238159503324237762343402417671916...