3.23 | Irodov Solutions | Electrodynamics

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 พ.ย. 2024

ความคิดเห็น • 6

  • @adity.atiwari
    @adity.atiwari 2 ปีที่แล้ว

    Is there any doable way to find this outside the cylinder or anywhere that's not the axis (at finite distance)? The 2kL/r (L being lambda) is basically infinite thin and infinitely long wires wires at distance of r from a point. I can't think of any way to concentrate the charges to a point so as to avoid having a variable R if we're not observing the centre. Any suggestions or it's not practical?

    • @Ankit_Singhvi
      @Ankit_Singhvi  2 ปีที่แล้ว

      Inside its a constant. Outside it can be found by approximating it to two almost overlapping cylinders of opposite charges. Just like 3.17!

    • @adity.atiwari
      @adity.atiwari 2 ปีที่แล้ว

      @@Ankit_Singhvi Oh right my bad sir, I forgot. Thanks a lot!

  • @raghavmundra
    @raghavmundra 2 ปีที่แล้ว

    can be done like in 3.17 ??

    • @Ankit_Singhvi
      @Ankit_Singhvi  2 ปีที่แล้ว +1

      Yes. And it will come constant everywhere inside as the answer we calculated(even though we did it at z-axis here). I am happy you noticed the similarity :)

    • @tushanpriya5784
      @tushanpriya5784 3 หลายเดือนก่อน

      @@Ankit_Singhvi Sir i tried to derive the surface charge density as you did in 3.17 but the σ is coming out to be 'ρt' where t is the length of the elemental cylinder(as you took in the derivation in 3.17), and therefore it is not matching with σ=(σ0)cos(x)...please help
      I DID IT