Granger Causality Test in R

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 ก.พ. 2025
  • Granger-Causality Test in R
    The Granger Causality test is used to examine if one time series may be used to forecast another
    Null Hypothesis (H0): Time series x does not Granger-cause time series y
    Alternative Hypothesis (HA): Time series x Granger-causes time series y
    library(lmtest)
    #load ChickEgg dataset
    data(ChickEgg)
    ?ChickEgg
    View(ChickEgg)
    #perform Granger-Causality test
    grangertest(chicken ~ egg, order = 3, data = ChickEgg)
    #knowing the number of eggs is useful for predicting the future number of chickens.
    #perform Granger-Causality test in reverse
    grangertest(egg ~ chicken, order = 3, data = ChickEgg)

ความคิดเห็น • 5

  • @MrHugosky1
    @MrHugosky1 2 หลายเดือนก่อน

    Beautifully explained. Thank you very much!

  • @pandaonsteroids5154
    @pandaonsteroids5154 7 หลายเดือนก่อน

    So is negative degrees of freedom bad? Because it seems weird, but I see you also get it. I know it's because the two columns in the dataframe or two time-series are the same length. Even if you do order = 1, you get -1 degrees of freedom for example. Do people ever like exclude the first observations of one time series and keep the other the same to not get negative degrees of freedom??