Linear Algebra Example Problems - Matrix Row Space Basis and Dimension

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 ม.ค. 2025

ความคิดเห็น • 14

  • @disaster359
    @disaster359 3 ปีที่แล้ว +4

    this was exactly what i needed to get through my homework, thanks so much

    • @AdamPanagos
      @AdamPanagos  3 ปีที่แล้ว +1

      You're very welcome, thanks for watching. Make sure to check out my website adampanagos.org for additional content (600+ videos) you might find helpful. Thanks, Adam.

  • @stijndhondt9611
    @stijndhondt9611 8 ปีที่แล้ว +8

    why do you take rows out of the rref of A for the row space but the columns of A for the column space?

  • @piggy519
    @piggy519 4 ปีที่แล้ว +2

    SIMPLE AND SWEET

  • @brittanielaird7510
    @brittanielaird7510 4 ปีที่แล้ว +2

    Why in your Column basis video, you take the basis of the original matrix A but in this one you take the row basis from the equvi. of A?

  • @romaion4024
    @romaion4024 7 ปีที่แล้ว +2

    thanks bud, very clear. all the best.

  • @AA-gm6el
    @AA-gm6el 2 ปีที่แล้ว

    Thanks!

  • @Zuwwar
    @Zuwwar 7 ปีที่แล้ว

    How do we know that the non zero rows are linearly independent?

    • @FunnyFavor
      @FunnyFavor 2 ปีที่แล้ว +1

      Because one row cannot be composed of the others. Since it's in RREF all first instances of 1 within each row are the only non-zero values in their respective column.
      For example: how do you get 1 from adding 0 to a 0. Answer: you can't

  • @AP-pm9qy
    @AP-pm9qy 5 ปีที่แล้ว

    You forgot to transpose the matrix.

    • @AdamPanagos
      @AdamPanagos  5 ปีที่แล้ว +2

      I'm not sure I understand your comment. The row space of a matrix A, is the subspace spanned by its rows. Row operations do not change the row space. So, performing row reduction on the original matrix and examining the final non-zero rows provides a basis for the row space. That's what was done in the video. I'm not sure where you think a transpose should go?

    • @AP-pm9qy
      @AP-pm9qy 5 ปีที่แล้ว

      @@AdamPanagos I thought the row space is the column space transposed. So after putting the matrix in rRef you transpose the matrix. So instead of it being: Basis of Row(A) = {[1 0 1 1 1 ], [0 1 1 -1 2]} it is Basis of Row(A) = {[1, 0, 1, 1, 1 ], [0, 1, 1, -1, 2]} going down.