The Matrix Exponential

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 ธ.ค. 2024

ความคิดเห็น • 50

  • @cantetrodolfojuancarlos2124
    @cantetrodolfojuancarlos2124 4 ปีที่แล้ว +24

    I watched a seminar of Gilbert Strang many years ago and now it seems he´s even better: he´s a Master teacher!

  • @sahilsingh1
    @sahilsingh1 5 ปีที่แล้ว +21

    Always been a fan of Gilbert Strang, and his Linear Algebra book

  • @26623661
    @26623661 7 ปีที่แล้ว +22

    he is 1000 times better than my instructor!! finally get some lectures with blackboard lol

  • @georgesadler7830
    @georgesadler7830 3 ปีที่แล้ว +6

    This is a beautiful lecture on Matrix Exponential by DR. Gilbert Strang. Linear Algebra flows into many forms of science and engineering. Control engineering uses linear algebra and differential equations to solve all their complex and linear systems.

  • @kcbandyopadhyay6747
    @kcbandyopadhyay6747 2 ปีที่แล้ว

    Incredibly Magnificent Teaching Guidance

  • @GireeshwarDM
    @GireeshwarDM 5 ปีที่แล้ว +12

    Explanation was excellent.
    Thank you Sir. I hope I will meet you one day.

  • @Titurel
    @Titurel 3 ปีที่แล้ว

    Jimmy Stewart is my favorite Linear Algebra teacher!

  • @marshall7253
    @marshall7253 5 ปีที่แล้ว +30

    "i'm not doing anything brilliant here" . .... its beautiful how it comes though

  • @mrflibble5717
    @mrflibble5717 7 ปีที่แล้ว +6

    Brilliant Lectures!

  • @saeida.alghamdi1671
    @saeida.alghamdi1671 2 ปีที่แล้ว +1

    Very valuable lecture! It should be the spring board to solve a system of first order linear differential equations.

  • @tobechukwublessed4274
    @tobechukwublessed4274 8 หลายเดือนก่อน

    Mhenn, Genius levels guy😵😵‍💫😵‍💫 he's too good. Be like him when I grow

  • @romanemul1
    @romanemul1 6 ปีที่แล้ว +107

    poor blind people they always tought that he is speaking about e^80

  • @fabiotp5068
    @fabiotp5068 ปีที่แล้ว

    3:07 since exp(At) is a matrix in which order do i put those? Aexp(At) or exp(At)A. it should matter, right?

    • @julianbruns7459
      @julianbruns7459 ปีที่แล้ว +1

      Great question. Under the wikipedia article of matrix exponential, under the topic "the exponential map"
      You can find the equality Xexp(tX)=exp(tX)X (where X is a matrix of course). however i wasnt able to find a proof for this statement in the article. If i had to guess, id say the reason they commute is because if you multiply A with the series representation of exp(At), the only matrix you multiply with is A itself, wich obviously commutes.

    • @fabiotp5068
      @fabiotp5068 ปีที่แล้ว

      @@julianbruns7459 thanks man that makes sense. Appreciate your answer :)

  • @thedujin
    @thedujin 5 ปีที่แล้ว +1

    Saved me before the final, thank you!

  • @matthewfairfield9354
    @matthewfairfield9354 6 ปีที่แล้ว +3

    Thank you, this is amazing !!!

  • @likisafile2568
    @likisafile2568 5 ปีที่แล้ว +2

    Best of best lecture

  • @roycekraakman9846
    @roycekraakman9846 4 ปีที่แล้ว

    Great instructor; really good

  • @gabe1006
    @gabe1006 5 ปีที่แล้ว +2

    Brilliant lecture! How can I like this twice?

    • @mohab.m.metwally
      @mohab.m.metwally 4 ปีที่แล้ว +3

      L=(like matrix) with eigen values Lev, liking it twice L would be L*L = V* Lev^2 * V, for V eigenvector of L, so find this comes down to solving Lev, V for your preference liking Matrix, that you have to provide for us.

  • @omarkhalifa4621
    @omarkhalifa4621 6 ปีที่แล้ว

    I like this instructor! Super!

  • @jesussantos8234
    @jesussantos8234 5 ปีที่แล้ว

    excellent professor great explanation

  • @IoT_
    @IoT_ ปีที่แล้ว

    Why do you need to define the derivative of the exponential function using derivatives of its Taylor series terms? Taylor series is derived itself using derivatives. You can just use derivative of the exponential function itself and multiple first Taylor series by matrix A.

  • @muhammadseyab9032
    @muhammadseyab9032 7 ปีที่แล้ว

    Excellent lecture

  • @AS-il7fm
    @AS-il7fm 5 ปีที่แล้ว

    13:53 eat = I at stop

  • @hamzaasif4775
    @hamzaasif4775 6 ปีที่แล้ว

    Thank you, Thank you, Thank you!

  • @alexandrosanastasiou1964
    @alexandrosanastasiou1964 4 ปีที่แล้ว

    Amazing. Thank you.

  • @shivrajahirwar4334
    @shivrajahirwar4334 5 ปีที่แล้ว

    nice explanation sir

  • @nargizn3183
    @nargizn3183 4 ปีที่แล้ว +1

    magnificent!

  • @ObitoSigma
    @ObitoSigma 7 ปีที่แล้ว +1

    Is the expansion series method the only way we can computer e^At when given only A. How could we use the exponential rule e^(B+C)t (where A=B+C) to compute e^At?

    • @homerobse
      @homerobse 6 ปีที่แล้ว +1

      As he showed in the second blackboard, when you have n independent eigenvectors, you can compute e^At using e^At = V e(Lambda*t) V^(-1).
      With V being the matrix of eigenvectors (each column is one of the eigenvectors of A), and Lambda being the diagonal matrix.
      As for using A=B+C, I found this wikipedia page (en.wikipedia.org/wiki/Matrix_exponential#The_exponential_of_sums) saying that for matrix exponentials you can only equate e^(B+C)t=e^(Bt) * e^(Ct) if B and C commute (meaning that BC = CB)

  • @abdessalamderbale5432
    @abdessalamderbale5432 5 ปีที่แล้ว

    Thank you

  • @dariodrigo3778
    @dariodrigo3778 4 ปีที่แล้ว

    Yes, but what the hell is a series with matrices as terms...?

    • @Eric-xh9ee
      @Eric-xh9ee 3 ปีที่แล้ว +1

      A power series

    • @muttleycrew
      @muttleycrew 2 ปีที่แล้ว

      It can be convergent when each matrix in the infinite series repeats. Consider any of the 2x2 Pauli matrices, for instance the one below.
      0 1
      1 0
      Square that and you get the identity. Once you have the identity as the square, the cube is the original matrix back again. The fourth power of that matrix is the identity again. You are collecting and distributing powers against two different diagonals. What you end up with, after exponentiating and collecting power series terms, is the power series for cosh(t) appearing on the main diagonal and the power series for sinh(t) on the off-diagonal.
      cosh(t) sinh(t)
      sinh(t) cosh(t)
      The Pauli spin matrices, denoted σ, are usually expanded using exp(i σ * θ/2) and where i = sqrt(-1) of course.
      That gets you half integer spins instead.
      cos(θ/2) _i_ sin(θ/2)
      _i_ sin(θ/2) cos(θ/2)
      So yes, as Eric said you get a power series. The point is that some very special matrices, like the Pauli spin matrices, will give you a power series for one or more of the rational functions. That is, so to speak, why the Pauli spin matrices are what they are. Each of the Pauli matrices just hands you a familiar-looking power series when you exponentiate them.

  • @ajsdoa6282
    @ajsdoa6282 6 ปีที่แล้ว

    Thank you, very clear and understandable!

  • @jinshuenjameslo9647
    @jinshuenjameslo9647 2 ปีที่แล้ว

    amazing

  • @homeomorfisme
    @homeomorfisme 3 ปีที่แล้ว +1

    Wink twice if your grandson forced you to make a yt video.

  • @sporefergieboy10
    @sporefergieboy10 6 ปีที่แล้ว

    Sheldon Axler sweatin

  • @godthisisannoying
    @godthisisannoying 6 ปีที่แล้ว

    Is he coming on to me? or is he asking for help in morse? just kidding, brilliant lecture.

  • @saicharanmarrivada5077
    @saicharanmarrivada5077 3 ปีที่แล้ว

    8:00 lol

  • @mohamed.m.saleh.m.m
    @mohamed.m.saleh.m.m 8 หลายเดือนก่อน

  • @dave1stfan
    @dave1stfan 5 ปีที่แล้ว

    nequation

  • @peterevans3310
    @peterevans3310 5 ปีที่แล้ว

    "The exponential pops a t in"

  • @rohanyuttham
    @rohanyuttham 5 ปีที่แล้ว +1

    saand teeps and trixx for MIT pleax