Stationarity & Seasonality| Time Series Forecasting #1|

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ม.ค. 2025

ความคิดเห็น • 49

  • @jinks3669
    @jinks3669 ปีที่แล้ว +3

    Dhanyavaad. As a data scientist I found this was very helpful

  • @RogerChristy-i3c
    @RogerChristy-i3c 11 หลายเดือนก่อน +1

    amazing content> very superb man i understood each and everything. For this shit i am paying 4 lakh rupees in a university in United states but cannot understand anything here. But this guy made it so simple. Thanks man. Reallly appreciate.

  • @teetanrobotics5363
    @teetanrobotics5363 4 ปีที่แล้ว +6

    Love the playlist on Time Series Forecasting. Hope you upload more videos.

    • @NachiketaHebbar
      @NachiketaHebbar  4 ปีที่แล้ว +1

      Thanks, and yes will definetly put out more!

  • @louisa123
    @louisa123 2 ปีที่แล้ว +3

    Thanks for your videos! I'm new to time series forecasting and your content gives me a good overview. I noticed though while reading more on the topic that you might have mixed up first order differencing with lag difference. What you describe ( Y(t) - Y(t-2) ) seems to be called a lag-2 difference and apparently order is how many times you do the whole process.

  • @ankitayadav2690
    @ankitayadav2690 2 ปีที่แล้ว +1

    its really good vedio to understand concepts,good work

  • @dewanshkumarmishra9378
    @dewanshkumarmishra9378 10 หลายเดือนก่อน +1

    Very helpful video ❤

  • @abhijeetjain8228
    @abhijeetjain8228 ปีที่แล้ว +2

    very well explained keep it up.

  • @Jevuify
    @Jevuify 2 ปีที่แล้ว

    Nice explanation. Your channel is underrated

  • @anuragpatil5812
    @anuragpatil5812 ปีที่แล้ว +1

    Thanks for the video !! superb explanation

  • @swapnadeepghosh8546
    @swapnadeepghosh8546 7 หลายเดือนก่อน

    bhai apne itna accha knowledge kaha se liya ??... thanks for passing it brother
    GOD bless you

  • @harinatha3102
    @harinatha3102 4 ปีที่แล้ว +1

    This video is worth watching....!
    Can you please make a video on Augmented Dickey Fuller test.

  • @lakshyadaulani2110
    @lakshyadaulani2110 3 ปีที่แล้ว +1

    please do make a video in mathematical calculation in both statistical tests for stationarity

  • @mehulmehta4981
    @mehulmehta4981 3 ปีที่แล้ว

    Amazing Explanation Brother....

  • @chandu9696
    @chandu9696 4 ปีที่แล้ว +1

    Well explained. Looking forward to more content.

  • @siddhijain3802
    @siddhijain3802 4 ปีที่แล้ว

    Thankyou for such simple explanation! Great!

  • @visunashokkumar1782
    @visunashokkumar1782 2 ปีที่แล้ว

    Mate this is so informative!!!

  • @arnavanuj
    @arnavanuj ปีที่แล้ว

    You are a Rockstar ❤️

  • @princekhunt13579
    @princekhunt13579 5 หลายเดือนก่อน

    Great explanation brother

  • @dicloniusN35
    @dicloniusN35 2 ปีที่แล้ว

    in python arima there is auto differencing? we don't need to fit model with this differenced time series? just select 'I' value? second param

  • @venkatesh0075
    @venkatesh0075 3 ปีที่แล้ว

    Superb explaination

  • @h4rsh261
    @h4rsh261 ปีที่แล้ว

    I understood the differencing part, but I have a question. If we take the differencing and reduce the scale of data from 400-500 to 0.1-0.5, wont we have trouble scaling the output later ? and if we take the differencing from the data to make it stationary doesnt it mean that we are changing the nature of the data and instead we can use a better model that can work with the current state of data ?

  • @wnurulain
    @wnurulain ปีที่แล้ว

    Can you share example of forecasting using hybrid models?

  • @joshpeters813
    @joshpeters813 9 หลายเดือนก่อน

    Okay so what is the interpretation of the final result vs the exponential curve?

  • @dabblewithd4247
    @dabblewithd4247 11 หลายเดือนก่อน

    Dude.... Thankyouuuuu soo much buddy

  • @medhavanisharma3323
    @medhavanisharma3323 2 ปีที่แล้ว

    Hello Nachiketa Can you just tell me if there is any videos regarding the theory content on this particular topic...

  • @abhishekagarwal4408
    @abhishekagarwal4408 4 ปีที่แล้ว

    very nice explanation
    i wanted to know can i do time series analysis on yearwise median income of men in any particular country???

  • @rutvikjaiswal4986
    @rutvikjaiswal4986 3 ปีที่แล้ว

    You are amazing sir !

  • @sulagnanandi2024
    @sulagnanandi2024 3 ปีที่แล้ว +1

    how can we get the actual predicted values back when converted data to stationary?

    • @dicloniusN35
      @dicloniusN35 ปีที่แล้ว

      do you know answer now?)) i have the same quastion beacause this stationarity convertation is not work for me) same mape

  • @tsreenivasulu8757
    @tsreenivasulu8757 11 หลายเดือนก่อน +1

    are you from VIT Vellore? the background in the video looks like vit hostel

  • @marksathish2783
    @marksathish2783 3 ปีที่แล้ว

    superb bro

  • @pragyabhardwaj7112
    @pragyabhardwaj7112 2 ปีที่แล้ว

    Please make a video for statistical test

  • @tinabeigi2493
    @tinabeigi2493 2 ปีที่แล้ว

    Hey, i liked your video, But can you please share the codes for the log operation, etc. Thank you.

  • @hshrestha2811
    @hshrestha2811 3 ปีที่แล้ว

    If the time series is stationary, does that mean that there is no white noise?

    • @raghavverma120
      @raghavverma120 2 ปีที่แล้ว

      That means it doesnt have trend,seasonality,cyclicality

    • @raghavverma120
      @raghavverma120 2 ปีที่แล้ว

      That is mean and variance are constant.. white noise is when the distribution is stationary mean=0 , constant variance, plus autocorrelation is 0

  • @poortijain9524
    @poortijain9524 9 หลายเดือนก่อน

    HI, can you also share these ppts please? :/

  • @kavishkagimhani9803
    @kavishkagimhani9803 7 หลายเดือนก่อน

    thank you

  • @venkatkasireddy8928
    @venkatkasireddy8928 2 ปีที่แล้ว

    Nicee

  • @luisarmando415
    @luisarmando415 3 ปีที่แล้ว

    kudos!

  • @jairaja6924
    @jairaja6924 6 หลายเดือนก่อน

    why there should be no seasonality

  • @pouriaforouzesh5349
    @pouriaforouzesh5349 2 ปีที่แล้ว

    👍

  • @Timothyjackzon
    @Timothyjackzon 8 หลายเดือนก่อน +1

    dude is 15?