Field Definition (expanded) - Abstract Algebra

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 ธ.ค. 2024

ความคิดเห็น • 368

  • @Socratica
    @Socratica  3 ปีที่แล้ว +18

    Sign up to our email list to be notified when we release more Abstract Algebra content: snu.socratica.com/abstract-algebra

    • @biswajitsuklabaidya780
      @biswajitsuklabaidya780 3 ปีที่แล้ว

      Can you please add videos on Linear algebra.

    • @AnupKumar-bd9eu
      @AnupKumar-bd9eu 3 ปีที่แล้ว

      Moomomomoommoommo

    • @cicik57
      @cicik57 3 ปีที่แล้ว

      must not a field have a propert that x*y means adding x+x+x...x y - times, or it can be different?

    • @MrAboy97
      @MrAboy97 10 หลายเดือนก่อน

      Hello, can you please tell me how to translate equations like (x^2+5x+6=0) into a math field? I tried looking up that in ANY way, but I've been having no luck finding a way. 😓😣😢

  • @NoActuallyGo-KCUF-Yourself
    @NoActuallyGo-KCUF-Yourself 5 ปีที่แล้ว +342

    This might have been the clearest explanation of rings and fields I've seen. Great vid!

    • @donquic
      @donquic 4 ปีที่แล้ว +2

      + Groups

    • @thecampverdekid806
      @thecampverdekid806 2 ปีที่แล้ว +1

      when i took abstract we did not study rings, integral domains or fields in class, were just given 3 pdfs that we were to study before the final exam

    • @jamesheffernan8000
      @jamesheffernan8000 3 หลายเดือนก่อน

      Agree - Books require memorization of ~250 pages to likely fully understand what was presented here.

  • @streampunksheep
    @streampunksheep 6 ปีที่แล้ว +309

    Best companion to self learning mathematicians.

  • @ishikasharma1000
    @ishikasharma1000 2 ปีที่แล้ว +32

    My problem with abstract algebra has always been intuition, which most professors and videos on the internet skip. I've been through many videos of Socratica's abstract algebra playlist and my basics are so much better! You've given me a simple intuitive approach that I can easily build upon with my textbooks. Special mention to this video, it's eye opening. Thanks for clearing the fog and making abstract ideas so comprehensible. This is rare, keep going, lots of love and gratitude 🙌🏻❤️✨

    • @cadaankaa
      @cadaankaa ปีที่แล้ว

      Totally true. So many resources won't even through a single bone to help intuition. It's definition/proof, barely alluding to novel examples. Throwing in integers mod P in this video really turbo-charged the intuition factor.

  • @nic741
    @nic741 3 ปีที่แล้ว +13

    Two days of reading books trying to understand this topic, and this video helps to break down and clear up any misunderstandings in less than 10 minutes. Thank you so much and please never stop making these explanation videos. :)

  • @BAstroboy
    @BAstroboy 2 ปีที่แล้ว +3

    Thanks! Great explanation of Fields!

    • @Socratica
      @Socratica  2 ปีที่แล้ว +1

      Thank you so much for your kind support! It makes a huge difference!! 💜🦉

  • @neilclay5835
    @neilclay5835 5 หลายเดือนก่อน +2

    The quality of your teaching is way beyond the average

  • @stuartneil8682
    @stuartneil8682 6 ปีที่แล้ว +8

    I like that your teaching videos are short and snappy. I’m extending my maths beyond the applied stuff I learned when studying electronic engineering decades ago. Purely out of whimsical interest and I get a bit addicted to it.

  • @vidanatural_oficial
    @vidanatural_oficial 6 ปีที่แล้ว +59

    I love Socratica too.. it is everything that a good channel should be.

  • @fjanbazi
    @fjanbazi 9 หลายเดือนก่อน +1

    You guys closed a black hole in my math knowledge, keep up the good work

  • @michaelnovak9412
    @michaelnovak9412 6 ปีที่แล้ว +86

    Yeay math. Please do videos on topology, real analysis and just any pure math subject you like.

    • @evelynbrylow3624
      @evelynbrylow3624 3 ปีที่แล้ว +1

      Yes!!! Please do videos on real analysis!

  • @andreibacila3175
    @andreibacila3175 4 ปีที่แล้ว +2

    This is amazing. It took me 30 seconds of watching this video to understand what i have been taking for granted in high school

  • @spiderjuice9874
    @spiderjuice9874 5 ปีที่แล้ว +3

    I'm building a computer and get to choose what instructions it will perform. While watching this video, I realised that I could free up 'space' for one extra instruction (a useful one that previously could not be included) by deleting all of the subtraction-based instructions and instead implementing negation-based instructions to go along with the pre-existing addition-based ones. In effect, I can do everything I could do before, and also got a bonus instruction into the bargain! I just have to perform subtractions in 2 steps instead of 1:
    1) negate B
    2) add A,B
    Credit where it's due: I had the thought to do this when you spoke about additive inverses, so thank you :)

  • @dinny4001
    @dinny4001 6 ปีที่แล้ว +32

    you have explained one of the most difficult math topics and made it look easy. I wish you were my prof in University

  • @PunmasterSTP
    @PunmasterSTP 3 ปีที่แล้ว +2

    I thought I found some very good resources over the years, but I am amazed at how I didn't come across Socratica until now. This is the first video of theirs that I have ever seen, and everything from the clear explanation and clean presentation to the really satisfying sound effects is top-notch. I am thinking I may have just started another binge-watch tonight...

  • @njabulomahlalela2912
    @njabulomahlalela2912 4 ปีที่แล้ว +5

    Your work I highly valued by myself, I can easily read through a textbook after watching your videos. You are so good!

  • @Goejii
    @Goejii 6 ปีที่แล้ว +49

    "Additive inverse" = "opposé" in french
    and "multiplicative inverse" is simply "inverse"

  • @webdeveloper-vy7hb
    @webdeveloper-vy7hb 5 ปีที่แล้ว +22

    Great video and really appreciated work. To provide great video without any cost is a noble work. Be with us and provide more videos on real-analysis :)

  • @krishnasharma-hi5tr
    @krishnasharma-hi5tr 4 ปีที่แล้ว

    Videos like these make me fell in love with Mathematics more and more.................. This is the best channel to learn mathematics!!!!!!!

  • @maxamedcabdi6397
    @maxamedcabdi6397 6 ปีที่แล้ว +10

    Thanks Socoratica
    from Somalia

  • @rogerwilcoshirley2270
    @rogerwilcoshirley2270 4 ปีที่แล้ว +1

    Excellent topic overview for those of us trying to get started with this and already the door is opening to a much more expansive beautiful intellectual view.

  • @erikolsen1333
    @erikolsen1333 6 ปีที่แล้ว +7

    I always love the math videos on this channel

  • @cobbiepeniels6437
    @cobbiepeniels6437 2 ปีที่แล้ว

    Socratica is a companion indeed, you make me feel safe. God bless you, and I hope to be a Patreon soon

  • @MatheusSouza-bf9ud
    @MatheusSouza-bf9ud 6 ปีที่แล้ว +8

    A good and fun video that we can watch smiling from beginning to end

  • @rikenm
    @rikenm 6 ปีที่แล้ว +8

    I was waiting for Field videos when I was taking Abstract Algebra in my junior year. Now, I have even completed my bachelors. Lol

  • @alexkorocencev7689
    @alexkorocencev7689 6 ปีที่แล้ว +15

    Thank you Socratica, very cool

  • @faridahmangondaya3532
    @faridahmangondaya3532 2 ปีที่แล้ว

    Thanks!

  • @anusha1113
    @anusha1113 2 ปีที่แล้ว

    I can't stop falling in love with maths because of ur way of teaching mam

  • @choiyan2729
    @choiyan2729 2 ปีที่แล้ว

    Thanks

  • @waelmarzouk3337
    @waelmarzouk3337 3 ปีที่แล้ว

    This is the most easy way to understand mathematics you are have a simple and deep understanding of mathematics thanks

  • @masoomlarka5503
    @masoomlarka5503 17 วันที่ผ่านมา

    I became fan of this Channel ❤. I loved the way you explained harder concepet in simpler terms.

  • @aishasaddiqa8345
    @aishasaddiqa8345 4 ปีที่แล้ว

    Yess!! Socratica We love to watch your videos because these build best concepts...Thank you so much

  • @patrickbyamasu1353
    @patrickbyamasu1353 2 ปีที่แล้ว

    You are the best at explaining these concepts which are somehow complicated. Thanks for making these video

  • @magdalenatopolewska814
    @magdalenatopolewska814 4 ปีที่แล้ว +1

    I am amazed by your explanation, it seem much easier now, thanks a lot!

  • @Konchunas
    @Konchunas ปีที่แล้ว

    Such a clear explanation even highschooler could understand. Very good, thanks

  • @benterrell9139
    @benterrell9139 4 ปีที่แล้ว +1

    Great video. This is my current course so I greatly appreciate the clarity

    • @Socratica
      @Socratica  4 ปีที่แล้ว

      Thank you for your kind words! Good luck in your course this term!! 💜🦉

  • @mohit0901
    @mohit0901 2 ปีที่แล้ว

    wish this was there when I was preparing for the exam ! GREAT VIDEO !!!

  • @alxjones
    @alxjones 6 ปีที่แล้ว +15

    It's worth noting that "division rings" do exist and aren't necessarily fields. As long as the multiplication is noncommutative, it will not be a field. But also commutative rings without multiplicative inverses aren't fields either. So really, they are both the distinguishing features between rings and fields.

  • @golhare
    @golhare 6 ปีที่แล้ว +2

    Thanks for making ideas of fields more clear.
    Hope you will make video on Galois fields and their applications.

  • @ChantalsBulgingEyebrow
    @ChantalsBulgingEyebrow ปีที่แล้ว

    thank you so much. I am studying for a quiz and doing homework and this helped so much

  • @louisscott471
    @louisscott471 5 ปีที่แล้ว

    I just binge watched all of Abstract Algebra. I started trying to makes sense of GCSE math (its unstructured memorization). Between here and numberphile we have what makes sense and interesting.

  • @mathswithmunira8676
    @mathswithmunira8676 3 ปีที่แล้ว

    I love the way you explain things...JUST BEAUTIFUL

  • @navjotsingh2251
    @navjotsingh2251 5 ปีที่แล้ว +5

    Hey socratica, can you do a series about Galois Theory and Polynomials? since that would be a nice follow up from your abstract algebra series and a nice refresher for the audience who may have done it in the past. Great videos :)

  • @nthpowerz.7133
    @nthpowerz.7133 3 ปีที่แล้ว +1

    The beats at 1:56 ! I thought it was my heart thumping really fast because of enlightenment 😂😅

  • @joydebroy8
    @joydebroy8 3 ปีที่แล้ว +2

    You are doing a great job SOCRATICA...please carry-on...Cover some topics of Differential Geometry if possible...

  • @HXMCPP
    @HXMCPP 2 ปีที่แล้ว

    i love her. the only good explanation i found among all the yb bs

  • @cheeneyap3573
    @cheeneyap3573 2 ปีที่แล้ว +1

    I was able to understand our lesson because of your videos. Next content please about Quasigroup. Thank you in advance!

  • @JWentu
    @JWentu 5 ปีที่แล้ว +1

    Just discovered this channel. Instant subscription! I LOVE the style of your exposition!

  • @newsgo1876
    @newsgo1876 11 หลายเดือนก่อน

    You are doing good for the whole mankind. Thank you.

  • @nandha0150
    @nandha0150 5 ปีที่แล้ว

    The best explanation in the internet.

  • @lusy3530
    @lusy3530 3 ปีที่แล้ว +1

    Thank you this's video very amazing and powerful content.

  • @sujitmohanty1
    @sujitmohanty1 ปีที่แล้ว

    No doubt these teachings are class apart!

  • @chenlightrain
    @chenlightrain 5 ปีที่แล้ว +2

    you and your team are so great, i do really appreciate your work! i understand more now , thank you

  • @joaquin-chw4924
    @joaquin-chw4924 9 หลายเดือนก่อน

    We look forward to more new videos, please. great contribution.

  • @muzafarhussain6878
    @muzafarhussain6878 5 ปีที่แล้ว

    She is a best teacher ..In my thinking ...

  • @Sam-tb9xu
    @Sam-tb9xu 3 ปีที่แล้ว

    Great explanation! Covered in less than 10 minutes what I spent an hour searching for. Sub and like 👍🏼

  • @wassimrharbaoui7333
    @wassimrharbaoui7333 4 ปีที่แล้ว

    Thanks for the video, pretty straight. The educational approach is awesome, good work !

  • @Shrikant_Anand
    @Shrikant_Anand 8 หลายเดือนก่อน +1

    Can anyone please explain why at 6:31 it is mentioned that any field F contains exactly one prime field as a subfield? If it were so then the field Q contains all integer mod p subfields which are prime fields.

    • @MuffinsAPlenty
      @MuffinsAPlenty 4 หลายเดือนก่อน

      Keep in mind that the operations in a subfield must be the same as that in the original field.
      For instance, in Z/2Z, we have 1+1 = 0, but in Q, we have 1+1 = 2, which is not 0. So they don't have the same addition. (And this generalizes to every prime field.)

  • @edh615
    @edh615 5 ปีที่แล้ว

    Auto-subscribed, don't even need to look at content of the channel, you already deserve it with this video.

  • @adityabodkhe914
    @adityabodkhe914 5 ปีที่แล้ว

    You explained all of this in best possible way ....you should go more then that would ne reallllly helpful .

  • @funwithwaniarumaisaareeba7586
    @funwithwaniarumaisaareeba7586 6 ปีที่แล้ว +2

    Thanks for uploading these valuable videos. Please also upload videos on functional analysis and complex analysis

  • @real_anil9688
    @real_anil9688 5 ปีที่แล้ว

    You sure make the mathematics understanding a quite easier

  • @piyushbansal9716
    @piyushbansal9716 3 ปีที่แล้ว

    Such sweetness in the end can't donate now surely in future 🙂

  • @madanravuri
    @madanravuri 5 ปีที่แล้ว

    Very nice video to learn abstract algebra in simple manner with simple english. Excellent work my teachers.... Thank you so much....

  • @user_375a82
    @user_375a82 ปีที่แล้ว

    This person is a genius - thx so much

  • @skittles6486
    @skittles6486 6 ปีที่แล้ว

    Wowwww. Just Wowww.
    Can't even explain how good it is.

  • @aabidmushtaq3243
    @aabidmushtaq3243 3 ปีที่แล้ว

    Really it is high quality explanation.
    Watching from Indian occupied Kashmir.

  • @Kishore8219
    @Kishore8219 2 ปีที่แล้ว

    Mind blowing clear definition of field awesome 👌

  • @vishalbehera2493
    @vishalbehera2493 3 ปีที่แล้ว

    best explanation for self learners. thank you

  • @ivideos7348
    @ivideos7348 2 ปีที่แล้ว

    Just to the point that's what make wonderful lectures ... Thank you Ma'am 😊

  • @czekiri
    @czekiri ปีที่แล้ว +1

    I prefer to write: (fog)(x):= f(g(x)) instead of fog(x)= (f(g(x)) ...as written at 0:04... nevertheless, congratulations for clarity of presentation

  • @paulinetaylor2810
    @paulinetaylor2810 4 ปีที่แล้ว

    I started to get inspired by physics through Stephen Hawking in 2018 so I started to self teach myself I started on math and I became good at in understanding the math more than ever but I haven't done any of the differential equations and multiavariable calculus so not trying to be like anyone I took a strong interest in it and physics, now im 39yr old I said to myself how well I am foing in math the past 3 or 4 yrs after in hightschool I used to be crap at math its amazing what self-teaching yourself can do.

    • @Socratica
      @Socratica  4 ปีที่แล้ว

      Lifelong learning FTW!!! Thank you for sharing your story - it inspires us to keep making videos!! 💜🦉

  • @sebastianvazquez310
    @sebastianvazquez310 4 ปีที่แล้ว

    Man I love this Channel

  • @josevitorcavalcante996
    @josevitorcavalcante996 3 ปีที่แล้ว

    Thank you. This video was perfect and helped me a lot.

  • @abidsyed9534
    @abidsyed9534 ปีที่แล้ว

    Nice description of fields

  • @ShaolinMonkster
    @ShaolinMonkster 5 ปีที่แล้ว +11

    Very good explanation. I lost you in what exactly is the Char(F). Maybe it needed a little bit more explanation. Or maybe I should study Galois Theory xD

    • @mzg147
      @mzg147 5 ปีที่แล้ว +4

      Char(F) is the smallest number of ones to be added in order for it to be zero. In Z/5Z, 1+1+1+1+1 (5 times) = 0

  • @aliawde4970
    @aliawde4970 ปีที่แล้ว +1

    Legendary explanation❤🙏🏻✌🏻

  • @osolomero9600
    @osolomero9600 6 ปีที่แล้ว

    Ojala pronto vuelva Socrática en Español . Felicitaciones por sus videos

  • @ghadeeryousif2602
    @ghadeeryousif2602 3 ปีที่แล้ว

    Beautiful explanation✨

  • @farhanislam8463
    @farhanislam8463 2 ปีที่แล้ว

    Great Video. Thanks for making this.

  • @ndeleonn
    @ndeleonn 5 ปีที่แล้ว +1

    Great explanation. However, as a scientist and not a mathematician I would have loved an example of using a field to address a problem.

  • @bckzilla
    @bckzilla 6 ปีที่แล้ว +1

    Awesome as usual.

  • @oliviamankowitz8121
    @oliviamankowitz8121 3 ปีที่แล้ว

    I love these videos. Thank you!

  • @homemade_draugr
    @homemade_draugr 4 ปีที่แล้ว

    Perfectly explained, thanks

  • @marciotraesel
    @marciotraesel 3 ปีที่แล้ว +2

    Loose Definitions
    + Monoid (no inverses)
    + - Group
    + - x Ring
    + - x ÷ Field

    • @idrisShiningTimes
      @idrisShiningTimes 2 ปีที่แล้ว

      I'd like to emphasize more on Monoids here.
      They are semigroups with an associative [a*(b*c) = (a*b)*c for a binary operation *] binary operation (+, -, ×, or ÷), with identity (1×a = a×1 = a, 0+a = a+0 = a)

  • @kirbymarchbarcena
    @kirbymarchbarcena 6 ปีที่แล้ว +3

    She teaches more concisely than my teacher at school

  • @joeyquiet4020
    @joeyquiet4020 2 ปีที่แล้ว

    thank you so much! for explaning group/ring/fields.

  • @adhinvs7132
    @adhinvs7132 5 ปีที่แล้ว +1

    Great Work🔥

  • @derciferreira7211
    @derciferreira7211 5 ปีที่แล้ว

    Finally I understood what is a field, thank you!

  • @thecampverdekid806
    @thecampverdekid806 2 ปีที่แล้ว

    I hated abstract when i took it, but it helped me understand mathematics more than any other class I took in undergrad

  • @EclipZeMuzik
    @EclipZeMuzik 6 ปีที่แล้ว +2

    wonderful work!!

  • @silasg9869
    @silasg9869 6 ปีที่แล้ว +16

    You should do a collab with Grant from 3blue1brown :D
    He is in deed very interested in collaborating with high quality education channels, he will be surprised, when he looks at your content 👍

  • @djeovs
    @djeovs 5 ปีที่แล้ว

    It's been a while I've been dreaming of a Socratica-like definition of a Function Field. I wonder if that will come true someday.

  • @sunnyvishnoi4310
    @sunnyvishnoi4310 ปีที่แล้ว

    I mean wow 😲,what an explanation,just amazing❤

  • @naveenchandrakumar480
    @naveenchandrakumar480 ปีที่แล้ว

    My God. I never heard the things this way... All are so stupid in talking about abstract algebra. You nailed it....

  • @aaroncollings9949
    @aaroncollings9949 5 ปีที่แล้ว

    This is very helpful keep up the good work. I will donate when I can.

  • @aresvepe
    @aresvepe 6 ปีที่แล้ว +2

    Is 0 the additive identity, not the additive inverse? Great video anyways, I love how clearly everything is explained.

  • @charitylyngdoh8912
    @charitylyngdoh8912 4 ปีที่แล้ว

    Great Jop 👍👍... Thank You Soooooo Much for these wonderful lectures 🙏🙏🙏

  • @alexdukhan
    @alexdukhan 5 ปีที่แล้ว

    Love this! More topology and the like (maybe even do a video on non-orientable surfaces)!

  • @jalisraja1359
    @jalisraja1359 3 ปีที่แล้ว

    You are the best teacher I have ever come across.