7 - Unobserved Confounding, Bounds, and Sensitivity Analysis

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 พ.ย. 2024

ความคิดเห็น • 15

  • @elnazkhaveh2597
    @elnazkhaveh2597 2 ปีที่แล้ว +2

    I watched almost all of your videos for Causal Inference, they are great!

  • @RAJANKUMAR-mi1ib
    @RAJANKUMAR-mi1ib ปีที่แล้ว

    Just wanted to Thanks a ton for such quality lectures.

  • @rck.5726
    @rck.5726 2 ปีที่แล้ว

    It is great to learn this topic from you Brady!

  • @WinFree66
    @WinFree66 4 ปีที่แล้ว +1

    a very nice and clear explanation of bounds and assumptions! thx!

  • @김태훈-r7t6w
    @김태훈-r7t6w 3 ปีที่แล้ว +5

    In ots2 implication, I think it may happen that the Y(0)>Y(1) individuals have higher Y(1) than Y(1)>=Y(0) individuals since they are separated. In that case I think ots2 bound is inavailable.

    • @DariaSukhareva
      @DariaSukhareva ปีที่แล้ว

      maybe, we need also to assume Y(0) is independent of T? That plus OTS will give E[Y(1)|T=0]

  • @rck.5726
    @rck.5726 2 ปีที่แล้ว +2

    How did we get the first inequality in the proof of the slide shown at 27:52?

    • @vitomandorino2582
      @vitomandorino2582 2 ปีที่แล้ว

      I'm trying to understand this step as well. In the example, one has E(Y | T=1 ) = 0.9 and E(Y | T = 0) = 0.2 and by OTS assumption, E( Y(1) | T = 0 ) < E(Y |T = 0) = 0.2. So I think in the example the inequality in the proof is verified

    • @nolangutierrez9572
      @nolangutierrez9572 ปีที่แล้ว

      Wow I'm sorry this is very late. But think of it like this. If Y1 < Y0 then E[ Y1| Y1 > Y0 ] > E[Y0 | Y1 > y0]. But if Y0 > Y1 then E[Y1 | Y1 < Y0] might or might not be greater than E[Y0 | Y0 < Y1]. It wouldn't be clear. On the other hand, E[Y1 | Y1 < Y0] > E[ Y1| Y1 > Y0 ].

  • @michelspeiser5789
    @michelspeiser5789 ปีที่แล้ว

    These assumptions lead to interesting bounds, but are they realistic in some contexts? e.g. when can you really make the OTS assumption?

  • @carlosserra91
    @carlosserra91 3 ปีที่แล้ว

    In the Observational-Counterfactual Decomposition (and the rest of bounds), do we need to condition on confounders to calculate pi? In other words, are we computing a propensity score or is this basic simply a marginal?

  • @silent_monk
    @silent_monk 3 ปีที่แล้ว

    In the notes about Linear Sensitivity Analysis you ask us "What assumption is violated when the data are generated by a noiseless process?" Could you clarify this for me? Thanks!

  • @matthewmechtly5026
    @matthewmechtly5026 ปีที่แล้ว

    It seems to me that performing the informal benchmark (from Cinelli and Hazlett (2020)) is a fool's errand, given that not all unobserved confounders are not created equal.

  • @hongemrys2759
    @hongemrys2759 3 ปีที่แล้ว

    How do we get the bound for counterfactual ( E[Y(1) | T=0]) in real life problems?

  • @peasant12345
    @peasant12345 3 หลายเดือนก่อน

    the gunshot treatment. lmao