A QuinVigintic Equation (A 25K Special!)

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 ต.ค. 2024

ความคิดเห็น • 157

  • @jasoncetron233
    @jasoncetron233 3 ปีที่แล้ว +52

    One small nuance that I tell my students all of the time: there are not 24 complex solutions, but instead there are 25, since the real solution is also complex. There is 1 real solution and 24 non-real solutions.
    As always, an excellent video! Congrats on 25k!!

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +6

      That's right!

    • @mokouf3
      @mokouf3 3 ปีที่แล้ว +1

      Yes. I also made the same mistake for infinitely many times!

    • @JohnRandomness105
      @JohnRandomness105 3 ปีที่แล้ว +1

      Let's be careful both ways. Let's avoid gotchas. So one should understand what is meant by one real solution and 24 complex solutions.
      One routinely refers to "integer spin" and "half-integer spin", with the understanding that the half-integer means non-integer. I don't really like saying, "integer-plus-a-half spin".

    • @squeezy8414
      @squeezy8414 2 ปีที่แล้ว

      What do you mean the real solution is also complex?

    • @denismilic1878
      @denismilic1878 2 ปีที่แล้ว

      @@squeezy8414 all real numbers are also complex number with zero imaginary part

  • @MathElite
    @MathElite 3 ปีที่แล้ว +21

    Congrats on 25K man! You deserve it so much
    I think 100K could come by the end of the year

    • @brentwilson6692
      @brentwilson6692 3 ปีที่แล้ว +4

      I'll look forward to seeing the proper term for a 100th degree equation at that time!

    • @infinitymodone4314
      @infinitymodone4314 3 ปีที่แล้ว +2

      definitely

    • @leecherlarry
      @leecherlarry 3 ปีที่แล้ว +1

      Congrats, 25k, just awesome!!

    • @HaiNguyen-qx3db
      @HaiNguyen-qx3db 3 ปีที่แล้ว +1

      @@brentwilson6692 So...how about an equation with 100 fraction mark and a radical?

    • @aashsyed1277
      @aashsyed1277 3 ปีที่แล้ว +1

      No even more.
      Btw, i can't see the join button
      And i think it is only in the USA

  • @HemantPandey123
    @HemantPandey123 3 ปีที่แล้ว +7

    Equation 1 uses the property that both functions are inverse of each other and satisfy f(x) = x.

  • @snejpu2508
    @snejpu2508 3 ปีที่แล้ว +20

    Congratulations on another milestone! Hmm, as I had no intention to deal with 25th degree polynomial, I started by being creative this time and it did its job. : ) I won't spoil all the solution, it's your part. But one little tip for solvers: it might be helpful for you if you know where a function and its inverse meet.

    • @leickrobinson5186
      @leickrobinson5186 3 ปีที่แล้ว +2

      Although you have to be careful. Some functions can also intersect their inverse off the diagonal.

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Thank you! 💖

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      @@leickrobinson5186 That's interesting! You mean they will not intersect on the diagonal?

    • @leickrobinson5186
      @leickrobinson5186 3 ปีที่แล้ว +1

      @@SyberMathI believe that you can show that any continuous function will intersect its inverse either not at all (as with y=e^x) or on the diagonal. However, in the latter case, it may also intersect its inverse off the diagonal as well. (E.g., the function y=(x-10)^2 will intersect its inverse in four places, two on the diagonal and two off the diagonal.)
      However, you can also construct a *discontinuous* function that only intersects its inverse *off* the diagonal. For example, the function defined by
      y = {1, x=0}
      will intersect its inverse at 2 locations, both off the diagonal [at (-1,1) and (1,-1)].

    • @sonalichakraborty6830
      @sonalichakraborty6830 3 ปีที่แล้ว +1

      @@leickrobinson5186 bro the functions u gave as example aren't even bijective how in the world are u talking about the graph of their inverses? 😂

  • @carloshuertas4734
    @carloshuertas4734 3 ปีที่แล้ว +7

    Another great explanation, SyberMath! I actually figured out the real value of x in my head. I did not know that there are 24 complex solutions in this math problem. Thanks!

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +2

      You're welcome! Thanks!

  • @henrydenner5448
    @henrydenner5448 3 ปีที่แล้ว +1

    Good day. Congratulations on the subs. You got me as a new one. I love the way you describe the solutions and I also find your vocal tone very pleasing to listen to. And most importantly, I love your tempo of explanation. I think it is JUST RIGHT. Awesome!

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +1

      Awesome, thank you and welcome aboard! 💖

  • @alatus2844
    @alatus2844 3 ปีที่แล้ว +3

    I tried 2. Considering that you have to subtract x to get 30 (0 as ones digit), x should have the same ones digit as its 5th power.

  • @emmanuellaurens2132
    @emmanuellaurens2132 ปีที่แล้ว

    This is late, but:
    you can rewrite the original equation as (x^5 -30)^5 -30 = x
    f is used in the video, so to avoid confusion let g(x) = x^5 - 30
    We now have g(g(x)) = x
    But g(x) is an easy function to analyze, it is a simple translation of x->x^5, so it is a strictly increasing bijection, and it increases faster than x->x, so it will have a single point where g(x0)=x0, which we can either solve or guess is x=2, g(2)=2 and g(g(2))=g(2)=2.
    For yy, so again no possible solution.
    This, x=2 is the only real solution.
    As for complex solutions, I feel there should be a way to find them through the same functional analysis, but I'm afraid it's beyond my knowledge and skill :/

  • @valentinodrachuk5692
    @valentinodrachuk5692 3 ปีที่แล้ว +2

    Wow! Already 25k! Congrants!

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Thanks! 💖

  • @tl1989
    @tl1989 3 ปีที่แล้ว +2

    Congratulations for 25k subscribers!!!

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Thank you! 💖

  • @derpycreeper2338
    @derpycreeper2338 3 ปีที่แล้ว +2

    Congrats on 25K subscribers! 👏🤯🎊🥳

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Thank you! 💖

  • @mustafizrahman2822
    @mustafizrahman2822 3 ปีที่แล้ว +3

    Congratulations for 25.2k !!

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +1

      Thank you! 💖

  • @rssl5500
    @rssl5500 3 ปีที่แล้ว +1

    Hello sybermath congrats to you on getting 25k I learned a lot from your TH-cam channel including wlog assumptions using inequalities in smart ways and using Simon to solve fractional equations
    Thank you so much sybermath :D

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Glad to hear that!

    • @rssl5500
      @rssl5500 3 ปีที่แล้ว

      :D

  • @gemeni0
    @gemeni0 2 ปีที่แล้ว +1

    Oh! No! We needed other 24 solutions not aproximations.

  • @tonyhaddad1394
    @tonyhaddad1394 3 ปีที่แล้ว +2

    Congratulation mst sybermath for 25k sub , keep on !! ❤

    • @aashsyed1277
      @aashsyed1277 3 ปีที่แล้ว

      You commented eallier today!

    • @tonyhaddad1394
      @tonyhaddad1394 3 ปีที่แล้ว +1

      @@aashsyed1277 yes so what ? 😂

    • @aashsyed1277
      @aashsyed1277 3 ปีที่แล้ว +1

      @@tonyhaddad1394 you don't comment this early!

    • @tonyhaddad1394
      @tonyhaddad1394 3 ปีที่แล้ว

      @@aashsyed1277 yes bro it depend if im free or not

    • @aashsyed1277
      @aashsyed1277 3 ปีที่แล้ว +1

      @@tonyhaddad1394 oh

  • @-basicmaths862
    @-basicmaths862 3 ปีที่แล้ว

    (x^5-30)^5-x=30
    Rearrange the equation as
    (x^5-32+2)^5-32-(x-2)=0
    A=x^5-32
    (A+2)^5-2^5-(x-2)=0
    A{(A+2)^4+(A+2)^3*2+(A+2)^2*4+
    +(A+2)*8+16}-(x-2)=0
    Now x-2 is factor of A and so factor
    ofLHS.x=2

  • @coolmangame4141
    @coolmangame4141 3 ปีที่แล้ว +1

    Congrats on 25K!!! 🎉

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Thanks! 💖

  • @mcwulf25
    @mcwulf25 2 ปีที่แล้ว +1

    I could see the X=2 solution at the start. The difficulty is proving it's the only solution. Nice problem 👍

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว +2

      Good point!

  • @laokratis55
    @laokratis55 3 ปีที่แล้ว

    Congratulations for the milestone! I am looking forward for more geometry related problems ! In the equation you presented, the solution method could be similar for any number m that can be written as m=a^5-a, 30 being one case . Then the initial equation becomes (x^5-a^5+a)^5-a^5-(x-a)=0. If you factor the first two terms you get (x^5-a^5)(20th order pol. in x)-(x-a)=0 which again gives the real root a. This is essentially the same with what you presented, but factorization is applied to the first step. As a second remark any number m can be written as m=a^5-a since this equation has one real solution for the number a (positive or negative) as you showed by the graphic solution, therefore the initial equation has exactly one real solution for any real m.

  • @moeberry8226
    @moeberry8226 3 ปีที่แล้ว +1

    Right from the start if you add oaks to both sides of the equation and take the 5th root on both sides you will realize that the functions are inverses of each other and therefore the only real solutions come from Y equals X and then you can solve from there.

  • @yoav613
    @yoav613 3 ปีที่แล้ว +1

    Very nice!

  • @oscar5535
    @oscar5535 3 ปีที่แล้ว +3

    I hope your channel has an exponential growth :D

  • @e-learningtutor1351
    @e-learningtutor1351 3 ปีที่แล้ว +1

    congratulations on 25k,you deserve it brother :)

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Thank you very much! 💖

  • @rjamesmontejo
    @rjamesmontejo 3 ปีที่แล้ว

    Congraaats!!

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Thank you! 💖

  • @harshsinghal5898
    @harshsinghal5898 3 ปีที่แล้ว

    Man this guy is a champion at solving higher degree equations!

  • @suhail_69
    @suhail_69 3 ปีที่แล้ว +10

    That's a strong term !! Quinviginticgigantic equation 😎

  • @aashsyed1277
    @aashsyed1277 3 ปีที่แล้ว

    Wow sybermath thanks so much!!!!!

  • @זאבגלברד
    @זאבגלברד 3 ปีที่แล้ว +1

    Guessing x=2 is simple. We have a line y=x+30 and f(x)=(x^5-30)^5. It is not difficult to find its derivative and conclude that increasing function, slightly before x=2 it is zero, and it is increasing very fast... almost like a straght vertical line... Do you think it is acceptable to explain like that ? that x=2 is the only intersection ?

    • @henrydenner5448
      @henrydenner5448 3 ปีที่แล้ว

      I agree. I was also sitting here thinking the same thing.

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Sounds good to me

    • @dominiquebercot9539
      @dominiquebercot9539 3 ปีที่แล้ว

      J’ai fait la même chose!

  • @quantumobject3815
    @quantumobject3815 3 ปีที่แล้ว +2

    Is anybody else wondering about the logo

  • @PunmasterSTP
    @PunmasterSTP 3 ปีที่แล้ว

    This was a wonderful video, and I definitely learned new stuff and had fun in the process. I suppose you could say that now, things are…five-by-five!

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Awesome! Thanks! 💖

  • @paragswarnkar6858
    @paragswarnkar6858 3 ปีที่แล้ว +1

    Please tell me how you got other 24 complex solutions 🥺 which method you used...can you make a video on it please

  • @Grassmpl
    @Grassmpl 3 ปีที่แล้ว

    Here's why the quartic has no real roots. Rewrite 4x^2 as 2x^2+2x^2 so now you have 6 terms in decreasing order of exponents. The sum of the first 3 term is >=0, and last 3 terms is >0, both by the quadratic formula.

  • @txikitofandango
    @txikitofandango 3 ปีที่แล้ว

    Congrats on your subscriber milestone! ... kilometerstone...

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +1

      Thank you very much! 💖

  • @aashsyed1277
    @aashsyed1277 3 ปีที่แล้ว

    Wow thanks for these joyful moments 😊😊☺️☺️😊😊

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      No problem! Thank you! 😊

  • @policarpo4816
    @policarpo4816 3 ปีที่แล้ว +2

    How do we demonstrate that x^4+2x^3+4x^2+8x+15=0 has no real solutions? With similar steps I concluded that x=2 is a solution, but I wasn’t able to show that it is the only solution.

    • @dqrk0
      @dqrk0 3 ปีที่แล้ว +2

      u can easily see it because u are adding a bunch of terms and u have x⁴ as a leading term which will PROBABLY ALWAYS going to exceed other terms. for the whole proof u will need to express it as a sum of perfect squares.

    • @policarpo4816
      @policarpo4816 3 ปีที่แล้ว +3

      @@dqrk0 Well, the leading term tells us about the limit to +infinity and -infinity, it doesn’t really tell us what happens “in between”.
      Anyway, I used your strategy and this is what I found: x^4+2x^3+4x^2+8x+15 = (x^2+x)^2+1/3(3x+4)^2+29/3, which is a sum of positive terms (actually, two are non-negative and one is positive), therefore the polynomial is always positive and has no real roots.
      Thanks a lot for your tip!!

    • @dqrk0
      @dqrk0 3 ปีที่แล้ว

      @@policarpo4816 yes, i agree, its not really a proof, but its a really good sign when u have a bunch of terms that are just adding up, it USUALLY means it doesn't have any real roots. of course u need a rigorous proof of that, but u know that u are chasing ,,no real roots" as a result. great job, i am glad i have helped :)

    • @MicheleCaine
      @MicheleCaine 3 ปีที่แล้ว

      The hard way is to do long division in order to prove that the quotient has no real solutions

    • @policarpo4816
      @policarpo4816 3 ปีที่แล้ว

      @@MicheleCaine if there are no solutions there is nothing to divide the polynomial by (without a remainder). If you mean dividing x^5-x-30 by x-2, I used synthetic division, there is really no need for long division

  • @pardeepgarg2640
    @pardeepgarg2640 3 ปีที่แล้ว

    Congratulations

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Thank you! 💖

  • @manumano3887
    @manumano3887 3 ปีที่แล้ว

    Wish u get a million subs soon

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      💖 Thank you! 💖

  • @speakingsarcasm9014
    @speakingsarcasm9014 3 ปีที่แล้ว +2

    I substituted x=2 r8 aftr seeing the eqn. 😎 my guess turned out correct!

    • @rssl5500
      @rssl5500 3 ปีที่แล้ว +2

      Lol

  • @mamaklu9518
    @mamaklu9518 2 ปีที่แล้ว

    To test x=1,x=2 find key x=2 it is very simple.

  • @GGR1986228
    @GGR1986228 3 ปีที่แล้ว

    (x^5 - 30)^5 - x = 30 = 32 - 2
    (x^5 - 30)^5 = 32 --> x^5 - 30 = 2 --> x^5 = 32 --> x = 2
    answer: x = 2

  • @Frankyang819
    @Frankyang819 3 ปีที่แล้ว

    amazing

  • @JohnRandomness105
    @JohnRandomness105 3 ปีที่แล้ว

    Just try out nice numbers, such as x = ...
    So how the heck do we divide out x-... from that polynomial?

  • @michaelempeigne3519
    @michaelempeigne3519 3 ปีที่แล้ว +2

    I got x=2 as an answer by inspection

  • @elmurazbsirov7617
    @elmurazbsirov7617 2 ปีที่แล้ว

    Красивое решение.Спасибо.Привет из Баку.

  • @Wurfenkopf
    @Wurfenkopf 3 ปีที่แล้ว

    Another solution:
    From the manipulation at 2:27 we know that x is a fixed point of f(f(t)), where:
    f(t) = t^5 - 30
    But the succession a[n+1]=f(a[n]) is strictly increasing for initial condition a[0]>2 and strictly decreasing for a[0]

  • @leecherlarry
    @leecherlarry 3 ปีที่แล้ว +6

    compi finds 25 solutions (24 complex, 1 real), here is the real solution:
    *Solve[(x^5 - 30)^5 - x == 30, x, Reals]*

    • @archiebrew8184
      @archiebrew8184 3 ปีที่แล้ว +1

      weird bot

    • @MathElite
      @MathElite 3 ปีที่แล้ว +1

      @@archiebrew8184 lol by the way it isn't a bot but it looks like one a little

    • @leecherlarry
      @leecherlarry 3 ปีที่แล้ว +2

      @@MathElite "it" = "bot" = "compi" ?
      yee .

    • @pardeepgarg2640
      @pardeepgarg2640 3 ปีที่แล้ว +1

      Yeet

  • @Umbra451
    @Umbra451 3 ปีที่แล้ว

    Nice solution! I assume all the complex solutions have the same absolute value as the real one?

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      That's a good question! Why would that be the case?

    • @Alians0108
      @Alians0108 3 ปีที่แล้ว

      @@SyberMath Because all solutions are written as
      R(cosv+isinv) = z
      IzI = sqrt(R^2(cos^2(v)+sin^2(v))) = R

    • @МаксимАндреев-щ7б
      @МаксимАндреев-щ7б 3 ปีที่แล้ว

      Let all 25 complex roots have absolute value 2. By Vieta's formulas, product of roots equals to -(-30^5-30), but it's absolute value equals to 2^25 by assumption. 30^5+30 is divided by 3, but 2^25 is not divisible by 3. Therefore, 30^5+30 ≠ 2^25. Contradiction.

    • @Umbra451
      @Umbra451 3 ปีที่แล้ว

      @@SyberMath Oh no, that was just a guess. I would love to see them mapped out and see if / why they make any kind of shape.

  • @michaelempeigne3519
    @michaelempeigne3519 3 ปีที่แล้ว

    (x^5 - 30 )^5 - 30 = x ==> Let f ( x ) = x^5 - 30
    so f ( f ( x ) ) = x
    and as a result f ( x ) = f^( - 1 ) ( x )

  • @paultoutounji3582
    @paultoutounji3582 3 ปีที่แล้ว

    I think you forgot the coefficient of the Pascal Triangle (1-4-6-4-1) in your demo....

  • @aviratnakumar5847
    @aviratnakumar5847 3 ปีที่แล้ว

    That's awaome now supposedly someone asks to find all the four complex solution to the other factors then how to proceed.

  • @tuongnguyenduc2291
    @tuongnguyenduc2291 3 ปีที่แล้ว

    Let y = x^5 -30 and we have system sym !

  • @udibaraj6714
    @udibaraj6714 3 ปีที่แล้ว

    Only mathematicians can solve this

  • @alnitaka
    @alnitaka 3 ปีที่แล้ว

    So what kind of an equation is (x^9-19680)^9 - x = 19680? I guess it would be an unoctogenic equation.

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Probably unoctogintic 😁

  • @Germankacyhay
    @Germankacyhay 3 ปีที่แล้ว +1

    👍

  • @mathsfamily6766
    @mathsfamily6766 3 ปีที่แล้ว

    So why do yo know the second factor is complex solutions? Sir

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Because the function is increasing, it can only have one intersection point with a horizontal line

  • @3r3nite98
    @3r3nite98 3 ปีที่แล้ว +1

    Ok,also adway kumar pls respond to me,Its my bad that I made u feel bad,I dont mean to make u feel bad.

  • @inkkouttritue6142
    @inkkouttritue6142 3 ปีที่แล้ว

    ở VN cái này gọi là hàm đặc trưng đấy mn ạ :))

  • @Teamstudy4595
    @Teamstudy4595 3 ปีที่แล้ว

    X=2

  • @tonyhaddad1394
    @tonyhaddad1394 3 ปีที่แล้ว +1

    11:06 but you didnt prove it (its another case ,not like (x^5+x =y^5+y)

    • @tonyhaddad1394
      @tonyhaddad1394 3 ปีที่แล้ว

      I have a proof :
      We have f(x) = x^4 + 2x^3 + 4x^2 + 8x + 15 = 0
      my claim is that its always > 0
      f(x) can be writen as
      (X+(1/2))^4 + (5/2)x^2 + (15/2)x + 239/16
      the first term is >= 0 (since 4 power)
      and the rest has negative descrimenent (and the coefficient of x^2 is positive) so the rest is always strictly bigger then 0
      therefor f(x) is always > 0

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +1

      Nice!

    • @tonyhaddad1394
      @tonyhaddad1394 3 ปีที่แล้ว

      @@SyberMath thank u 😍

  • @aashsyed1277
    @aashsyed1277 3 ปีที่แล้ว

    You should say in the title real solutions.
    Btw, how did Wolfram alpha solved a 25th degree polynomial cause there is no 25th degree solution.

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      It probably approximated

  • @ezequielangelucci1263
    @ezequielangelucci1263 3 ปีที่แล้ว +1

    -30 -30 = 0?????

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +1

      -30 - (-30) = 0

    • @ezequielangelucci1263
      @ezequielangelucci1263 3 ปีที่แล้ว

      @@SyberMath ohhhh, srry i was thinkinf like 10 minutes that i dont figure how
      thnxs a lot! i love your videos

  • @gemeni0
    @gemeni0 2 ปีที่แล้ว

    I think the right spanish-latin word is quinvigesimic or quinvigesic not the way you've put it.

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว

      I think the right word is viginti quintic. I don't know why I used quinvigintic which is 10^78
      en.wiktionary.org/wiki/quinvigintillion 😜

  • @rocketsroar1
    @rocketsroar1 3 ปีที่แล้ว

    It is difficult for me to see any point to these videos, since the "solutions" involve a huge amount of prior knowledge which cannot be explained or justified within the video. I would recommend abandoning this kind of effort.

  • @mustafizrahman2822
    @mustafizrahman2822 3 ปีที่แล้ว +1

    Congratulations for 25.2k !!