Mr. Clayton, the way you structure your lectures by illustrating every piece of theory with an example is a jewell in the land of education. I love it! The only negative point I can come up with is that you don't speak Dutch. Many greetings from the Netherlands.
I participated in a solid mechanics course when I was an undergraduate student in 2014. Actually, the first and second lectures remind me of ten years ago at school. I have been working as a CFD engineer since 2019 in the industry, but I am also trying to learn FEM because there are not as many job opportunities for CFD professionals. These lectures are actually ingenious and very helpful in expanding my career path. Thanks a lot.
Shouldn't it be (h/4) instead of (h/2) for the argument in the second set of parentheses at the 2:34:16 mark? Also, nice work...I'm loving these videos!
Dear Pettit : Congratulations for your post, and Channel, I ve learn a lot. Woulld it be possible to post the presentation pdf file and the Mathematica file so we can follow through in our adventure inti FEM. Thanks
There is a minor error in the equation for von Mises stress: I2(s) is equal to 0.5{[I1(s)]^2 - I1(SS)} it doesn't affect the final result since I1(S) is zero
i dont understand 1:49:46, taking the limit of an expression as a variable approaches 0 is pretty standard but I figure the point of the infinitesmal dX is that its infinitesmal, so the proximity to 0 should not change the equation.
This Clayton guy is pretty good, i gotta say. His trademark "hehehe'" 11:28 got me addicted to his videos. On a separate note, also great didactis. Subscribed
1:57:04 Hello, dear professor In slide displacement function, why is y not a function of x2? I see that when we move in the direction of x2, the value of y changes
Thank you very much for yours videos ! I come form france and it's help me very much ! I would to ask you a question : why the shear force before dx1 is not in the same sense that after dx1 because q is the same along the cube no ? Also i think it's maybe q that i don't understand 😅 if it's a stress or not... actually i have 17 years old and i do a master degree (i'am in advance). Once thanks you, i hope that you understand what i want say because my english is not very well 😅
Hello, thank you for your series. I've started learning with this course and it looks good if you post pdf of each lecture. How can we get it (pdf) ? Thank you so much.
At 43:20, how do we know which direction does each sigma_{i, j} point? For sigma_11, it points negative-e1. sigma_12 points positive-e2, sigma_13 points negative-e3. For sigma_31, it goes negative-e1. sigma_32 goes negative-e2, sigma_33 goes negative-e3. What is the rule here? Please help.
There is mistake in the direction of S12. Everything should be going in the negative ei direction. Thank you for pointing this out as I have yet to catch it!
The tetrahedron is formed by slicing a parallelepiped along an arbitrary plane. So, the force acting on the cutting plane is the reaction exerted by the other half of the parallelepiped and has an opposite sign. So basically, on all the faces besides the cutting plane, the stress vector would be the opposite sign. That is the only rule. And yes sigma12 would be in the negative direction.
Mr. Clayton, the way you structure your lectures by illustrating every piece of theory with an example is a jewell in the land of education. I love it! The only negative point I can come up with is that you don't speak Dutch. Many greetings from the Netherlands.
oh I feel like we came here from same place for same reasons considering that you're from Netherlands xD
Indeed, this dude is a gem
I participated in a solid mechanics course when I was an undergraduate student in 2014. Actually, the first and second lectures remind me of ten years ago at school. I have been working as a CFD engineer since 2019 in the industry, but I am also trying to learn FEM because there are not as many job opportunities for CFD professionals. These lectures are actually ingenious and very helpful in expanding my career path. Thanks a lot.
Hi, I will be pursuing a master's course with having specialization in CFD. If possible can we have a discussion about that somewhere else?
best lecture for finite elements. thank you!
You have made a new channel Mr Clayton. I literally panicked, when I couldn't find your videos in your other channel.
Dear Dr. Clayton, thank you very much for the lecture. Greetings from South Korea
The lectures are so great! Thanks for sharing🙏🏻
Nice and easy :) Thank you very much Clayton
those lectures are briliant. nice and keep simple. it helps a lot for unterstanding . thanks a lot for sharring those videos.
Shouldn't it be (h/4) instead of (h/2) for the argument in the second set of parentheses at the 2:34:16 mark? Also, nice work...I'm loving these videos!
Dear Pettit : Congratulations for your post, and Channel, I ve learn a lot. Woulld it be possible to post the presentation pdf file and the Mathematica file so we can follow through in our adventure inti FEM. Thanks
Hi Mr. Clayton, in 1:18:15, why there is a number of 2 in front of the strain component from epsilon12 to epsilon32?
Brilliant teaching….thank you
There is a minor error in the equation for von Mises stress: I2(s) is equal to 0.5{[I1(s)]^2 - I1(SS)} it doesn't affect the final result since I1(S) is zero
i dont understand 1:49:46, taking the limit of an expression as a variable approaches 0 is pretty standard but I figure the point of the infinitesmal dX is that its infinitesmal, so the proximity to 0 should not change the equation.
Thanks Dr. Clayton!
sir could u please tell us where we can download the slides of these lectures.
This Clayton guy is pretty good, i gotta say. His trademark "hehehe'" 11:28 got me addicted to his videos. On a separate note, also great didactis. Subscribed
1:57:04 Hello, dear professor
In slide displacement function, why is y not a function of x2?
I see that when we move in the direction of x2, the value of y changes
Thank you very much for yours videos ! I come form france and it's help me very much ! I would to ask you a question : why the shear force before dx1 is not in the same sense that after dx1 because q is the same along the cube no ? Also i think it's maybe q that i don't understand 😅 if it's a stress or not... actually i have 17 years old and i do a master degree (i'am in advance). Once thanks you, i hope that you understand what i want say because my english is not very well 😅
holy jesus greatful to Dr.Clayton,you save me!
STudying in GErman UNiversity, but my learning material comes from Cleytton
Good day sir, would is it possible to post the example and the solutions? This would be great help in order to check my solution.
Hello, thank you for your series. I've started learning with this course and it looks good if you post pdf of each lecture. How can we get it (pdf) ? Thank you so much.
Dear Dr.Clayton , are there eclass resource available for me non-local student ?
Where can I get the pdf notes please
Hello,
at 1:34:00 how should we calculate G12/G13/G23?
Great one! thanks.
Show de bola!
Woow it's good, thanks
At 1:07:10, is the I_1(S) missing the squared? I mean, I_2(S) = 0.5 * [I_1(S)^2 * I_1(S * S)], right?
You are correct :)
At 43:20, how do we know which direction does each sigma_{i, j} point?
For sigma_11, it points negative-e1. sigma_12 points positive-e2, sigma_13 points negative-e3.
For sigma_31, it goes negative-e1. sigma_32 goes negative-e2, sigma_33 goes negative-e3.
What is the rule here? Please help.
There is mistake in the direction of S12. Everything should be going in the negative ei direction. Thank you for pointing this out as I have yet to catch it!
The tetrahedron is formed by slicing a parallelepiped along an arbitrary plane. So, the force acting on the cutting plane is the reaction exerted by the other half of the parallelepiped and has an opposite sign. So basically, on all the faces besides the cutting plane, the stress vector would be the opposite sign. That is the only rule. And yes sigma12 would be in the negative direction.
@@jagjitbajwa68 Oh my gosh. It's been so long that I forgot I did comment here. Thank you for your answer!
can i have the ppt file for my study ?
I think who said "velocity" were in the wrong class.🤣🤣🤣
18:51