It’s over…my new LLM Rig

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 พ.ย. 2024

ความคิดเห็น • 332

  • @irrelevantdata
    @irrelevantdata หลายเดือนก่อน +19

    If you are running a GGUF model, ollama will split the process, putting as many layers as it can on GPU and the rest on CPU. IT will run slower, but faster than CPU only.

    • @paulhorn24
      @paulhorn24 28 วันที่ผ่านมา +1

      👍

    • @tasdude3227
      @tasdude3227 18 วันที่ผ่านมา +1

      @@paulhorn24 yeah I think a 4090 paradoxically is not as good choice as let's say gpu with no graphical capabilities but way more vram right?

  • @eternalnightmare2749
    @eternalnightmare2749 หลายเดือนก่อน +49

    Chinese modders transplanted a chip from RTX 4090D to a custom board or a 3090 board and soldered 48 GB of memory. Real beast for AI rig. However, I'm not sure about the warranty for such Frankenstein card.

    • @Larimuss
      @Larimuss หลายเดือนก่อน +11

      It's honestly sad at this point neither nvidia, Intel or amd have come out with a $700 card that just has 48gb vram and a $900 model with 128GB. The memory is cheap as nvidia just wants to squeeze you to spend $2000 on 4090.
      With Ai now I think at least just 1x consumer model would be good from someone. I mean, you'd sell at least 2m units.

    • @cena777248
      @cena777248 หลายเดือนก่อน +1

      ​@@Larimussas far as I know nvidia has monopoly over AI due to their CUDA technology.
      Until amd or intel isn't capable of competing with nvidia in this space, there wouldn't be any card with such memory.

    • @Larimuss
      @Larimuss หลายเดือนก่อน +1

      @cena777248 yeh they do for now. Intel has already created some inference with their tech I beleive. And since CPU models exist I'm sure if amd made a cheap 48gb vram card the internet will figure out how to convert models or whatever it is. I'm pretty sure you can run some models with amd too? Just much less support where nvidia just runs everything right now and most optimally I think.

    • @jeremykothe2847
      @jeremykothe2847 หลายเดือนก่อน

      @@Larimuss Agreed. Everyone wants more vram, not more speed. But monopolists do monopoly stuff.

    • @jeslinmx22
      @jeslinmx22 หลายเดือนก่อน

      @@Larimuss it’s not good business for the average consumer to have access to good, fast, general-purpose local AI. We’d pay, what, maybe $600 more for that at an enthusiast level, less for the average consumer. But as long as AI remains the domain of big cloud companies and startups backed by VCs with deep pockets, people will keep flocking to them for this seemingly exclusive godlike power, and they will keep paying enterprise money to Nvidia.

  • @Krath1988
    @Krath1988 หลายเดือนก่อน +5

    Haven't seen anyone do a video using multiple video cards in parallel to run a large model. So that is my humble request. Love the content.

    • @paulhorn24
      @paulhorn24 28 วันที่ผ่านมา

      👍

  • @blackhorseteck8381
    @blackhorseteck8381 หลายเดือนก่อน +77

    Mini PCs have revolutionized the boring PC market. The power they are able to squeeze inside these small boxes gives me hope for the future of computing.

    • @kroeken
      @kroeken หลายเดือนก่อน +7

      While I agree that they are cool, they kind of become pointless once you add one of these giant eGPUs. You could build a mini itx pc instead and avoid the occulink restrictions while also gaining the increased upgradability of a full desktop.

    • @rochester3
      @rochester3 หลายเดือนก่อน +1

      @@kroeken but you cant over clock your cpu

    • @JustSomeGuy009
      @JustSomeGuy009 หลายเดือนก่อน +2

      @@rochester3 huh? Yes you can. A proper ITX or mATX build is better in every way to these mini PCs with external GPUs.

    • @TheRaretunes
      @TheRaretunes หลายเดือนก่อน +1

      Mini PCs are (for the most part) just laptop bowels transplanted in a little box.
      They have use cases, for sure (hospitals, HTPCs, schools, small clients, emulation boxes, offices) but as soon as you ramp up the performances the prices and drawbacks (mainly thermals) go up quickly too, at the point where it's better to stick to a custom build solution unless you REALLY need the small form factor.
      I admit that the mainstream pc market of today is VERY boring though, it peaked just around pre-covid and stayed there (I'm still using my ryzen 3600 + 6700 xt and I don't feel the need to upgrade to PCIx 5, while I bleeded money into my home server instead).

    • @ZeerakImran
      @ZeerakImran หลายเดือนก่อน +1

      @@TheRaretunes true. But i hope the tech gets better and better for them. I find pc cases to be really ugly. Didn’t mind them back in the day but those aren’t best for airflow. Talking about airflow, just how much air do you need. I like small itx cases a lot more and surprisingly, they show that you don’t really need that much space for airflow and good temps. “Building computers” is also an overhyped genre. It’s really not all that it’s cracked up to be.

  • @serikazero128
    @serikazero128 หลายเดือนก่อน +14

    small advice regarding ollama:
    use verbose
    example: ollama run llama3.1:8b --verbose
    technically these commands, including what you ran, keeps the model loaded. You have to manually unload it, or you can tell the model to unload after you go /bye:
    ollama run llama3.1:8b --verbose --keepalive 10s
    the verbose will tell you the tokens per second generated.
    the keepalive 10s will drop the model from memory after 10s

    • @Lemure_Noah
      @Lemure_Noah หลายเดือนก่อน +3

      @@serikazero128 or if you already "inside" Ollama type /set verbose

    • @paulhorn24
      @paulhorn24 28 วันที่ผ่านมา

      👍

    • @paulhorn24
      @paulhorn24 28 วันที่ผ่านมา

      @@Lemure_Noah👍

  • @blackhorseteck8381
    @blackhorseteck8381 หลายเดือนก่อน +79

    Some points here Alex:
    1. The power cable that's split into three power plugs is a "dongle" that converts the 12V HPWR plug that's too recent for most power supplies out there, so they supply a splitter that is powered by 3 or 4 of the 8 pin PCI-E connectors.
    2. The drivers for your GPU are provided by Nvidia themselves (just Google game ready drivers for RTX 4090), as the AIB drivers (Gigabyte's) are outdated.
    3. All modern GPUs (from 2010 onwards) are all set to have zero fan revs at sub 60° C.

    • @R1L1.
      @R1L1. หลายเดือนก่อน +9

      point 3 is not right.

    • @blackhorseteck8381
      @blackhorseteck8381 หลายเดือนก่อน +1

      @@R1L1. You're talking about exceptions to the rule, I only recall the Vega VII that had it's fans running all the time because it ran hot as the sun. Apart from that point 3 is the rule.

    • @R1L1.
      @R1L1. หลายเดือนก่อน +2

      @@blackhorseteck8381 that doesn't change the fact that you are wrong, you could have just said most modern GPUs not all GPUs . Even then my rx6500xt always keeps the fans on, same with my 3060, didn't change anything after buying so yeah... Idk.

    • @cor74
      @cor74 หลายเดือนก่อน +2

      @@R1L1. my 970 also has always on fans

    • @pid1790
      @pid1790 หลายเดือนก่อน

      @@R1L1. are you using 2 monitors?

  • @harryhall4001
    @harryhall4001 หลายเดือนก่อน +12

    Serious question: why not just use the power directly if you're UPS isn't big enough? This isn't a mission critical server with important information, it doesn't need 24/7 operation during a power outage.

  • @corvinyt
    @corvinyt หลายเดือนก่อน +11

    The UPS going off was hilarious! 😂

    • @blackhorseteck8381
      @blackhorseteck8381 หลายเดือนก่อน

      I thought it was mine for a sec 😅

  • @TechGameDev
    @TechGameDev หลายเดือนก่อน +11

    10:10 The GPU spikes while running Ollama could be due to
    Batch processing: The AI might be processing data in phases, causing short bursts of high GPU usage.
    Resource optimization: The GPU is only used for certain tasks, leading to inconsistent usage.
    Power management: The GPU adjusts its power consumption based on demand, resulting in spikes.

    • @dontblinknerd
      @dontblinknerd หลายเดือนก่อน

      could it be limiting by the drivers? I've read something about the drivers limiting the cards for uses other than gaming.

    • @TechGameDev
      @TechGameDev หลายเดือนก่อน

      @@dontblinknerd Windows automatically install the latest version of Nvidia drivers, otherwise it would not detect the RTX 4090 but the Microsoft video card.

  • @3monsterbeast
    @3monsterbeast หลายเดือนก่อน +19

    I think you meant 40Gigabits/s for Thunderbolt 4 - instead of gigabytes.

  • @ldandco
    @ldandco หลายเดือนก่อน +2

    I've got a 1080 ti from 2017, and a PC I built in 2016 overclocked to almost 5Ghz, 6 cores 12 threads, with 64 GB Ram
    I am currently running Llama 3.2 7B models lightning fast with my PC

  • @autoboto
    @autoboto หลายเดือนก่อน +5

    I experienced the same VRAM problems. I have a i9-32 thread and 128GB system RAM and runs the large models in slow motion but works. Small models run fast enough to use on the i9, but if it fits the gpu 16GB its really fast and enough to use as a service for a few clients. I'm using 4090 mobile=4080 desktop. Large models, these days, seems the Mac unified ram is the way to go for running large models but slower, but at least it runs and the wait is not too long.

    • @testales
      @testales หลายเดือนก่อน

      I'm not convinced about the Mac's unified RAM. What all these Mac youtubers don't show you is the impact of larger prompts. While you may be fine with 5tokens/s, it's gonna suck if you have to wait a minute before it even starts to generate something.

  • @gaiustacitus4242
    @gaiustacitus4242 หลายเดือนก่อน +2

    The white video cards are usually purchased by people building a "snow blind" PC - white case, white video card, white power supply, white cables, etc. These white video cards can be difficult to source and during periods of short supply they command a premium price with no other benefit than matching the color of the build.
    Larger LLMs yield very poor performance when spilling over from the maximum RAM of the nVidia RTX 4090 into the 128 Gb RAM in my tower PC. I get much better performance running up to 70 billion parameter LLMs on my MacBook Pro M3 Max. This is why I will be purchasing a Mac Studio M4 Ultra with maximum RAM installed when it is available.

  • @albertjeremy3956
    @albertjeremy3956 หลายเดือนก่อน

    Thanks for the demo. Now i understand how the llm work, especially the part where it consume power and how it consume the memory. With this info, i can manage the usage properly.

  • @TazzSmk
    @TazzSmk หลายเดือนก่อน +2

    ollama is smart enough to use two gpus simultaneously, so for that 40GB LLM you really have to use two gpus with 24GB vram each,
    once you get over gpu vram capacity, things go into ram and though cpu which is terribly slow - at such point Apple Silicon Macs have advantage of utilizing shared ram, so something like 64GB Mac Studio "outperforms" and PC with lack of gpu vram

  • @monkeyfish227
    @monkeyfish227 หลายเดือนก่อน +3

    I can’t understand why I find unboxing all this stuff was so interesting.

    • @ely_twix9580
      @ely_twix9580 หลายเดือนก่อน +2

      Me too, I’m addicted to these videos 😅

  • @itiswhatitis-yes
    @itiswhatitis-yes หลายเดือนก่อน +3

    This was a crazy video!! One of your best!!!

    • @AZisk
      @AZisk  หลายเดือนก่อน +2

      Glad you liked it!!

  • @jukiy67
    @jukiy67 27 วันที่ผ่านมา +1

    i love this man, never bored watching

  • @Heythisismychannel
    @Heythisismychannel หลายเดือนก่อน +2

    I have a 3090 with 24GB and yes you can run 13b. Nice setup

  • @purian23
    @purian23 หลายเดือนก่อน +8

    Come on Alex, the fact that you bought a 4090 and don't have a home built PC is crazy lol. Bring that in as your next project Mr. Laptop / Mini PC guy 😂

    • @AZisk
      @AZisk  หลายเดือนก่อน +7

      idk man, i just don’t want a big box standing around heating up the place.

    • @purian23
      @purian23 หลายเดือนก่อน +10

      @@AZisk don't worry the new 4090 will do that itself haha. Great video!

    • @tablettablete186
      @tablettablete186 หลายเดือนก่อน +2

      ​@@purian23My 4080 is a heater already lol
      It is nice when the room is cold

  • @chrisa4072
    @chrisa4072 หลายเดือนก่อน +11

    Yo your surge protector gonna explode. Haha.
    The GPU spike is normal. It's likely just the model going back and forth.
    Beeeeeeep!!!

  • @milleniumdawn
    @milleniumdawn หลายเดือนก่อน +1

    Thx for the content.
    But as you pointed out, as long as consumers CUDA video card will be limited to 24 go, speed don't matter if you are that limited in model size.

  • @dustinwenzel1446
    @dustinwenzel1446 หลายเดือนก่อน

    seasonic is definitely an amazing power supply. ive used them for all of my builds

  • @georgioszampoukis1966
    @georgioszampoukis1966 หลายเดือนก่อน +8

    Well there is always the RTX 6000 Ada that is essentially a 4090 with 48GB VRAM but it costs around 10.000 USD I believe 😅

    • @AZisk
      @AZisk  หลายเดือนก่อน +5

      only $5000 😝

    • @samizdat_eth
      @samizdat_eth หลายเดือนก่อน +2

      @@AZisk The Ada is $7200 at the cheapest. Where are you finding it for $5k? Or are you mixing it up with the previous gen RTX A6000?

    • @soumyajitganguly2593
      @soumyajitganguly2593 หลายเดือนก่อน +1

      @@samizdat_eth the previous gen A6000 is not that bad.. it's a 3090 with 48GB and you can get it for ~4k.

    • @testales
      @testales หลายเดือนก่อน +1

      @@AZisk You are confusing it with the older RTX A6000 of the previous generation. I got the Ada one and it was nearly 8k€ on a good day.... so my car has to somehow surive for some years more now. :-|

  • @ToddWBucy-lf8yz
    @ToddWBucy-lf8yz หลายเดือนก่อน +1

    If you want to run larger model's on that card look for a Mixture of Experts model, otherwise stick with models smaller than 10-12gb in size, especially if you choose one that has a large context length. I recently sold my 4090 to help finance a second A6000, I can get Llama 70 q8 models to run with a 98k context length but only just barely. That eats up about 56gb of vRAM the rest goes to the context window weights and all sorts of other stuff.

  • @gamingengineering565
    @gamingengineering565 หลายเดือนก่อน

    that ups sound in the perfect moment 🤣.doing a nice job. keep it up

  • @AlmorTech
    @AlmorTech หลายเดือนก่อน +2

    Definitely need to build something! Awesome video 😍

  • @jake-ep9wq
    @jake-ep9wq หลายเดือนก่อน +9

    You can see additional stats on model performance like tokens per second by using the --verbose flag with Ollama run.
    So Ollama run llama3.1 --verbose.
    Love the videos!

    • @johnmarshall4_
      @johnmarshall4_ หลายเดือนก่อน

      This is a great way to benchmark new local LLMs. Just use a common prompt and compare.

    • @zandanshah
      @zandanshah 22 วันที่ผ่านมา

      Can you list all the ollama commands/flags Thanks

  • @giridharpavan1592
    @giridharpavan1592 13 วันที่ผ่านมา +1

    really killing that poor ups

  • @Dr3x0w
    @Dr3x0w หลายเดือนก่อน +1

    My best guess about the gpu spikes: the whole LLM does not fit into the vram. And this means the gpu has to load new parts into vram. 13B models run fine on GPU but beyond that it’s CPU+GPU

  • @fontenbleau
    @fontenbleau หลายเดือนก่อน +4

    Also ISTA-DASlab (on huggingface) managed to squeeze original Llama 70B 140Gb model into 22Gb remaining 90+% quality ratio, so it can run on one 3090 card. 8B model they've made possible to run on smartphones.

  • @Victornemeth
    @Victornemeth หลายเดือนก่อน +1

    Ollama on linux is even more performant. If the model is too large to fit on the vram it will normally "overflow" to the system memory but still use the gpu, normally you would get arround 30% gpu utilization depending on the "ratio" of vram usage vs system memory. I like this sort of videos please go deeper into this. This is out of experience and I did not search in this in the documentation as it just worked like I wanted it too.

  • @Tarbard
    @Tarbard หลายเดือนก่อน +6

    running "ollama ps" will show you how much of the model is loaded on system ram vs GPU ram. You want 2x4090s for enough VRAM to run a 70b at a good speed.

    • @reezlaw
      @reezlaw หลายเดือนก่อน

      2 used 3090s would do a more than decent job for a fraction of the price

    • @soumyajitganguly2593
      @soumyajitganguly2593 หลายเดือนก่อน

      @@reezlaw but it wont be a mini PC anymore

    • @reezlaw
      @reezlaw หลายเดือนก่อน

      @@soumyajitganguly2593 indeed

  • @ErikFrits
    @ErikFrits หลายเดือนก่อน +1

    Can you explain the downsides of quantizing models?
    What are the disadvantages of running a 70B model on a 4090 with increased quantization?

    • @slavko321
      @slavko321 หลายเดือนก่อน +1

      Quantizing lowers the actual resolution of the model, it is less precise, but can still create good results unless quantized to oblivion.

  • @siddu494
    @siddu494 หลายเดือนก่อน +1

    Wow Alex, that's surprising! Even the RTX 4090 seems to struggle, but as someone suggested in the comments, try updating your Nvidia drivers to see if it helps. I ran the same model on an AMD graphics card, and most of the time, it defaults to the CPU, with 0% GPU utilization. Since AMD lacks CUDA cores, I assumed that's why it ignores the GPU. Seeing this happen with your Nvidia card makes me wonder if we can force GPU usage.
    However, running models locally on our PCs doesn’t seem practical right now, as online models often deliver better results. Local setups might still be useful for generating small code snippets, though.

  • @andrewowens5653
    @andrewowens5653 หลายเดือนก่อน +3

    You should have bought a AMD Radeon™ PRO W7900 Dual Slot, which has 48 GB of GDDR6.

  • @cooky842
    @cooky842 หลายเดือนก่อน +1

    Of course it just work.. oculink is just pcie over a cable. That's why it's not hot swappable. So it work just as easily than plugging a gpu in a regular pc, with the bandwidth limitation.

  • @TechCarnivore1
    @TechCarnivore1 22 ชั่วโมงที่ผ่านมา

    That powersupply is completely overkill.

  • @klaymoon1
    @klaymoon1 หลายเดือนก่อน +3

    Great video! But, didn't you do something similar before and your macs destroyed NVIDIA?

    • @AZisk
      @AZisk  หลายเดือนก่อน +3

      I did it with the rtx4090 in a laptop

  • @mptcz
    @mptcz หลายเดือนก่อน +1

    Loving the LLM testing videos! Now I need a 4090 😁

  • @abhilashkp6864
    @abhilashkp6864 หลายเดือนก่อน +2

    11:00 Ollama has this feature (?) that makes it so that when you exceed a certain percentage the GPU vRAM, it meets the rest of its requirements from the system memory and CPU. That is why it is significantly slower. But it makes sure that you get an output unlike others that net you an OutOfMemoryError.

    • @anuragshas
      @anuragshas หลายเดือนก่อน

      Isn’t it a llama.cpp port to go?

    • @abhilashkp6864
      @abhilashkp6864 หลายเดือนก่อน

      @@anuragshas Ollama is built based on llama.cpp, but everything about Ollama is automatically handled (in this case the CPU/GPU allocation).

  • @habios
    @habios หลายเดือนก่อน

    Yes, it will run on whatever has enough memory to run into. 4090's are extremely good for Stable Diffusion, but not for big LLMs.

  • @BinaryClay
    @BinaryClay 22 วันที่ผ่านมา

    I have a laptop with TB4 and a watercooled egpu with a 3090 in it. It works perfectly as i always offload the llm to my vram anyway. With TB5 starting to show Oculink will need an oculink v2 to compete :)

  • @yonathandevash7657
    @yonathandevash7657 หลายเดือนก่อน +4

    Love your videos

    • @AZisk
      @AZisk  หลายเดือนก่อน +1

      Thanks

  • @elwii04
    @elwii04 หลายเดือนก่อน +3

    11:15 It automatically offloads some layers of the llm to the system RAM so it uses both gpu and cpu

    • @Nik.leonard
      @Nik.leonard หลายเดือนก่อน +1

      Check ollama logs, there you will see a "xx/yy layers ofloaded to GPU".

  • @Kvantum
    @Kvantum หลายเดือนก่อน +1

    That PSU will work great to go in an entire desktop with the one 4090. Not really enough for 2x 4090s, though. That really needs a 1600W psu.

    • @Lemure_Noah
      @Lemure_Noah หลายเดือนก่อน

      Actually LLM inference doesn't need too much power. Just limit GPU max power with nvidia-smi or afterburner to ~250w per GPU and be happy.
      It's has very very low impact on tokens / sec.

  • @baoxinlong2455
    @baoxinlong2455 หลายเดือนก่อน +1

    From a computer engineering background I’m 200% sure that your spikes comes from the bottlenecking of the GPU, basically it only gets the load for some milliseconds, then it is waiting for the data transfer in the pipeline, and keep looping in that, you are only using 63Gbps/ 1008GBps transfer rate

    • @MultiMojo
      @MultiMojo หลายเดือนก่อน

      Oculink is limited to 63Gbps transfer rate

    • @ChrisMartinPrivateAI
      @ChrisMartinPrivateAI หลายเดือนก่อน

      @@MultiMojo As they say in the boat business, isn't that 63Gbps "a hole below the waterline?" If Oculink still is the limited factor, why have such a beefy GPU if you can't integrate it for full effect?

  • @Bogomil76
    @Bogomil76 หลายเดือนก่อน +14

    Thunderbolt 5, announced by Intel, brings significant improvements over Thunderbolt 4. It supports data transfer speeds of up to 80 Gbps, which can double to 120 Gbps in certain configurations (using a feature called “Bandwidth Boost” for high-bandwidth applications like displays). Key improvements in Thunderbolt 5 include:
    • Increased Bandwidth: Standard 80 Gbps, with the ability to dynamically boost up to 120 Gbps.
    • Display Support: Enhanced support for multiple high-resolution displays, including up to 3 x 4K displays or 2 x 8K displays.
    • Expanded PCIe Bandwidth: 3x the PCIe data bandwidth of Thunderbolt 4, enabling faster external storage and support for high-performance peripherals like GPUs.
    • Backward Compatibility: It remains backward compatible with Thunderbolt 4, Thunderbolt 3, USB4, and USB3.
    Thunderbolt 5 is expected to appear in devices starting in 2024.

    • @johnpp21
      @johnpp21 หลายเดือนก่อน +1

      this is clearly AI and doesn't know wtf is TB5

    • @f.iph7291
      @f.iph7291 หลายเดือนก่อน

      Lmao. Even then the bandwidth is much lower than the 4090 which is arounf 1tb/s

    • @Bogomil76
      @Bogomil76 หลายเดือนก่อน +1

      @@johnpp21 „Clearly“, and thats why?

    • @Bogomil76
      @Bogomil76 หลายเดือนก่อน

      @@f.iph7291 Yeah, but faster than Oculink

    • @R1L1.
      @R1L1. หลายเดือนก่อน

      @@f.iph7291 before you open your mouth please fist research what you are talking about, the only thing in the 4090 that runs close to that band width is the memory at 1008 GB/s. It has nothing to do with thunderbolt 5.

  • @Gixion01
    @Gixion01 หลายเดือนก่อน +1

    Hi, nice test. Did It works also with a card like A6000 or h100?

  • @thewreckedship5526
    @thewreckedship5526 หลายเดือนก่อน +17

    this is so cool, thanks for showing us

    • @AZisk
      @AZisk  หลายเดือนก่อน +1

      Thanks for watching!

  • @gregsLyrics
    @gregsLyrics หลายเดือนก่อน +2

    Amazing vid and helpful to understand how to set up our private computing. The 4090 is limited by VRAM, as you demonstrated. Why not attempt this with an A6000 (48MB VRAM) model? The A6000 is optimized for AI performance, whereas the 4090 is optimized for gaming and 3D rendering. Thoughts?

    • @AZisk
      @AZisk  หลายเดือนก่อน +1

      sure there are better gpus for AI, but i would say they are a bit out of the budget of most consumers. even the 4090 is at the top end of what the consumer market can bear.

  • @momendo
    @momendo หลายเดือนก่อน +10

    LM Studio can split the model between CPU and GPU. You can tweak the split between them in the UI. Try that.

    • @linklovezelda
      @linklovezelda หลายเดือนก่อน +1

      Ollama does this automatically as well. If you look at the task manager while the 70b model is running, the vram is filled up.

  • @SCHaworth
    @SCHaworth หลายเดือนก่อน

    I use a 4070ti, a 1080ti, a 1060 6g, and a 5700xt.
    Works fine. if i pay that much for anything its going to be a new threadripper first.

  • @JBoy340a
    @JBoy340a 23 วันที่ผ่านมา

    It would be interesting to see how this compares to full size PC with a 4090. I am starting to build a system around a 4090 tomorrow. I went the more traditional route with a full size case, i9-13900, Asus Tuff Gaming MB, Corsair 1200 PS, 64GB, etc. Something smaller might be nice so I am watching closely.

  • @SuperFredAZ
    @SuperFredAZ หลายเดือนก่อน +1

    I'm not sure why you chose a mini-computer and occulink, when you could have used an itx mb with full 16 lane PCIe5 capabilities? It's not smaller, or more convenient or efficient just doesn't make a lot of sense.

  • @dtesta
    @dtesta หลายเดือนก่อน +2

    Yepp, that is why I saved my money and only got a 3060 12GB GPU. I still get about half of the speed of the top cards and most models are 8B. Next step is usually too much for 24GB anyways. Better to save money for now and buy something in a few years when VRAM probably is a lot cheaper or more specialised cards gets released.

    • @fontenbleau
      @fontenbleau หลายเดือนก่อน

      you can run very big 70B models on your card with 90% quality, like from ISTA-DASlab austrian EU research team on huggingface

    • @reezlaw
      @reezlaw หลายเดือนก่อน

      "Next step is usually too much for 24GB" Sorry but no, you CAN put those 24GB to good use, you just have to use quantized models. You can squeeze every bit of performance from a 3090 or 4090 by finding models that are around 20 GB, leaving some headroom for the rest of the OS/UI and your context window.

    • @fontenbleau
      @fontenbleau หลายเดือนก่อน

      @@reezlaw yes! like ISTA-DASlab on huggingface incredible work with models

    • @dtesta
      @dtesta หลายเดือนก่อน +1

      @@reezlaw With that logic, I can use a quantized model to fit in 12GB too. 70B models quantized down to under 24GB will simply not perform well, so it's useless in my opinion. The prices for such cards are simply insane, unless you are lucky with a used one.

  • @kevinlantw
    @kevinlantw หลายเดือนก่อน

    I prefer another mini PC also from Minis Forum, the GTi4 Mini PC with EX Docking, which includes a 600W power supply. The mini PC can work independently or be plugged into the EX Docking to use a 4090 graphics card. It looks much cleaner since there are no extra cables.

  • @boris---
    @boris--- หลายเดือนก่อน +3

    NOWAY he installing nvidia drivers from GIGABYTE

  • @anoopramakrishna
    @anoopramakrishna หลายเดือนก่อน +1

    Really cool, wondering if there are dual or Quad GPU solutions

  • @theontologist
    @theontologist หลายเดือนก่อน +4

    WOW. How much did this cost? I’m sensing an Amex Black Card in the vicinity.

    • @AZisk
      @AZisk  หลายเดือนก่อน +6

      🤣 the dock was only $99

  • @monstercameron
    @monstercameron หลายเดือนก่อน

    llama.cpp and everything based on it can offload layer of the model to system memory. Meaning you can run larger model at a huge performance penalty. Strong rec for LMStudio!!!

  • @futurerealmstech
    @futurerealmstech หลายเดือนก่อน

    Would love to see you do fine-tuning and inference tests on a 16" 2019 MacBook Pro with an eGPU.

  • @bobbastian760
    @bobbastian760 หลายเดือนก่อน +6

    eGPUs are the future, best of all worlds.
    Plug it into an oculink laptop though, like a GPD winmax, then you just need 1 machine.

  • @timsubscriptions3806
    @timsubscriptions3806 หลายเดือนก่อน +2

    If you went with a 750W PS you have:
    - plenty of power
    - save $100
    - NO alarm bells going off. 😂

    • @AZisk
      @AZisk  หลายเดือนก่อน +2

      i got greedy with power

  • @ye849
    @ye849 หลายเดือนก่อน +1

    The issue that you see with over 24gb is not because it’s running on the CPU. It’s because ollama uses your RAM as a buffer for the vram. Only your ram is at best 55GBps while Vram in that 4090 is probably 650GBps. Add to that your using the oculink symmetrically- i’m assuming you have around 20GBps each way? (Dunno the oculink standard)
    Also note you are changing the latency by magnitudes. From ns to just under miliseconds (due to distance, several standards translation etc) and in a case of a huge matrix made of very small chunks of dara, that the algorithm needs constant access to it’s entirety..
    So your left with a processor moving around lots of data but can’t keep feeding the parallel units of the g card.

  • @GCkernkraft235
    @GCkernkraft235 หลายเดือนก่อน

    Power suppllies often hit peak efficiency around 40-60% loading so thats a justification for 1200w

  • @erproerpro903
    @erproerpro903 หลายเดือนก่อน

    Alex по красоте! Теперь прикуплю ✌️

  • @agiverreviga4592
    @agiverreviga4592 หลายเดือนก่อน +1

    Which monitor are you using?

  • @psychurch
    @psychurch 23 วันที่ผ่านมา +1

    Just saw the news with thunderbolt 5 able to transfer up to 120 Gbps 😮

  • @henrylawson430
    @henrylawson430 หลายเดือนก่อน

    Llama 3.2 3b is fantastic for text summarisation.

  • @johnathaan1
    @johnathaan1 หลายเดือนก่อน

    Awesome video can’t watch it with volume up with your ups freaking due to it making my dogs bark they think it’s the fire alarms

  • @puyansude
    @puyansude หลายเดือนก่อน +1

    Wow, cool video, Thank You 👍

  • @DanFrederiksen
    @DanFrederiksen 19 วันที่ผ่านมา +1

    Need to know how M4 max compares to a proper 4090!

  • @4.0.4
    @4.0.4 29 วันที่ผ่านมา

    Highly recommend you use exl2 instead of GGUF quantization. It only works on actual GPUs and not CPU-only systems like the Mac, so it's lesser known, but it's much faster than GGUF.

  • @clivefoley
    @clivefoley หลายเดือนก่อน +1

    One of the things I love about hardware is there is zero need for instructions "Does this fit in there? It does. Well that's where it's supposed to go!". Brilliant.
    I laughed out loud when the UPS kicked in.

  • @cosmicsin2544
    @cosmicsin2544 หลายเดือนก่อน

    isn't there a option to hotswap number of layers being kept in gpu vram.... u can control that, it works out in most cases.

  • @eudy97
    @eudy97 หลายเดือนก่อน

    USB4 2.0 80Gbps transfer speed should be pretty sweet when it lands.

  • @MobileJeremie
    @MobileJeremie หลายเดือนก่อน

    any advice on a ready to use pc set up. I will be using it exclusively for AI Generation, Model/Lora Training. BTW, if you have a referral link for whatever you recommend please share that with me as well. Thanks in advance, love your channel!

  • @jasonhoffman6642
    @jasonhoffman6642 หลายเดือนก่อน

    How would you feel about doing some fine-tuning? Maybe your fastest Mac Studio vs. This thing?

  • @ujjwalbhatt4766
    @ujjwalbhatt4766 หลายเดือนก่อน +2

    What keyboard are you using😅?

    • @AZisk
      @AZisk  หลายเดือนก่อน +2

      this one: www.keychron.com/products/keychron-q1-max-qmk-via-wireless-custom-mechanical-keyboard?ref=azisk

    • @ujjwalbhatt4766
      @ujjwalbhatt4766 หลายเดือนก่อน +2

      Thanks for replying btw i just saw gear links in description ​@@AZisk

  • @potsandjacks
    @potsandjacks หลายเดือนก่อน +1

    My Kizer is ALSO my faverit knife!!

  • @zerogravityfallout4228
    @zerogravityfallout4228 หลายเดือนก่อน

    thank god you god that ATX 3.0 to prevent the meltdown stuff on the 4090

    • @DriverGear
      @DriverGear หลายเดือนก่อน

      @@zerogravityfallout4228 having an ATX 3.0 PSU doesn’t mean you’re protected against the meltdown unfortunately…

  • @Beauty.and.FashionPhotographer
    @Beauty.and.FashionPhotographer หลายเดือนก่อน

    Why not use PINOKIO to install phyton and ollama-webui etc?

  • @deal2live
    @deal2live หลายเดือนก่อน +1

    ORAC. Coming into reality!!!😂

  • @ap99149
    @ap99149 หลายเดือนก่อน +1

    Alex - are you sure Ollama is running on the CPU?
    When I train Pytorch models, and accidentally exceed the GPU dedicated memory, the system starts to use the "virtual video memory" (or whatever Windows calls it).
    I get crazy high CPU usage, as I assume that the CPU is managing the data transfer down the busses from the GPU to system RAM.
    It is significantly slower than keeping it in GPU memory alone, but it faster than running on the CPU.. but the computation is still on the GPU
    I'd love to see a test when you disconnect the GPU as a control test!

  • @MeinDeutschkurs
    @MeinDeutschkurs หลายเดือนก่อน

    What connection is this?

  • @Christopher-lb6rf
    @Christopher-lb6rf หลายเดือนก่อน

    If you use LM Studio, you can fill the GPU with most of the layers, and put the final layers on CPU, you will very fast responses with a minor hit on performance, I am not sure if you can do this in Ollama though

  • @DanFrederiksen
    @DanFrederiksen 18 วันที่ผ่านมา +1

    Also why did you ever use laptops for serious computing??

  • @KaranSinghSikoria
    @KaranSinghSikoria หลายเดือนก่อน +1

    My Mac heated up by just watching this in 4k lolz

  • @PrabhathReddy-l9c
    @PrabhathReddy-l9c หลายเดือนก่อน

    Hey, could you make a video about Snapdragon processors and the compatibility issues developers face, especially for college students working on projects? It would be really helpful to understand how to optimize for Snapdragon chipsets and address common challenges

  • @martin777xyz
    @martin777xyz หลายเดือนก่อน +2

    Is it possible to chain the external dock for multiple gpu?

    • @AZisk
      @AZisk  หลายเดือนก่อน +2

      unfortunately no

  • @FujishiroX
    @FujishiroX หลายเดือนก่อน +2

    woah that's sick

  • @BirdManPhil
    @BirdManPhil 25 วันที่ผ่านมา

    hey so just a heads up, even though people reference parameters as the sctual issue with available vram, its only a loose correlation. the actual size of the model itself on GB has to fit it vram with room to spare to run on the gpu. also i cant think id the licrary name but intel is realsing 1 bit cpu inferencing support soon and youll be bale to run mocels well over 100 b params very very fast right in almost any modern intel cpu due to them being quantized to 1 bit.

  • @soumyajitganguly2593
    @soumyajitganguly2593 หลายเดือนก่อน

    Ollama can offload model layers to the GPU I guess.. In other applications like ooba-text-gen or LMStudio you can actually specify how many layers you want to offload to the GPU. Rest of the model will run on your CPU. The speed gains are noticeable when you have at-least 50% of the layers offloaded. But with 24GB and 70b models it wont be 50%.

  • @collinsutherland311
    @collinsutherland311 หลายเดือนก่อน +1

    I always get platinum or titanium PSUs cause I love overkill 😁

  • @Tfghga
    @Tfghga หลายเดือนก่อน

    interesting keep 'em coming. I'm working on these too..

  • @lionelpeer4097
    @lionelpeer4097 หลายเดือนก่อน

    You should make a video on replacing Copilot with Ollama and Continue!

  • @djayjp
    @djayjp หลายเดือนก่อน +1

    10:00 a MiB =/= Megabit. 6100 MiB is just under 6GB or 48Gb or 5100 Mb.

  • @BelarusianInUk
    @BelarusianInUk หลายเดือนก่อน +1

    Why do you need ups for dev machine?

    • @AZisk
      @AZisk  หลายเดือนก่อน

      i have a bunch of stuff on my desk that’s not just laptops

  • @Rushil69420
    @Rushil69420 หลายเดือนก่อน +1

    Didn’t realize that was a Kizer; we all have the same hobbies lmfao.

    • @AZisk
      @AZisk  หลายเดือนก่อน

      love that knife!