An Interesting Equation From Math Olympiads

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 ม.ค. 2025

ความคิดเห็น •

  • @timothybohdan7415
    @timothybohdan7415 19 วันที่ผ่านมา +7

    You made a math error in the 1st method since the right hand side " = 1" got changed to " = 0" by mistake. Thus, the constant term on the left hand side should simplify to +84 and not +85. It doesn't matter much since you stopped trying to solve the problem at that point and switched to the 2nd method, but it would be a big deal if you had continued solving the 1st method.

  • @robyzr7421
    @robyzr7421 18 วันที่ผ่านมา +1

    This time i m a bit lazy x making and solving this interseing exercise.. Tomorrow better. By the way..
    Give you a very honest thx x all your lessons, wish you spend a good and happy Christmas 😊 dear teacher

    • @SyberMath
      @SyberMath  17 วันที่ผ่านมา +2

      Merry Christmas and Happy New Year to you too! 🎄

    • @AntimatterBeam8954
      @AntimatterBeam8954 11 วันที่ผ่านมา

      Hope you had a good Christmas Sybermath! Happy new year for tonight! From London, UK

  • @wes9627
    @wes9627 19 วันที่ผ่านมา +1

    Substitute x=y-2 into the given equation and revise to 2[y^4+6y^2+1]+y^2-2=2y^4+13y^2=0. Thus y=0 twice and y=±i√26/2
    It follows that x=y-2=-2 twice and x=±i√26/2-2.

  • @dwm1943
    @dwm1943 19 วันที่ผ่านมา +4

    Do you know what? After following you for some time now, I immediately went for the substitution you used. Method 2. As you say, how powerful! And to be still learning and improving at 81 is great. Thank you so much.
    Fittingly, my age is 3^4 and in a few more days it will be 2025, which is of course a perfect square. Better still, 2025 = (5^2) x (3^4).

    • @wes9627
      @wes9627 19 วันที่ผ่านมา

      I'm also 81 and have been using the substitution method almost since I was in diapers. I always look for ways to symmetrize and cancel out extra terms.

    • @AntimatterBeam8954
      @AntimatterBeam8954 11 วันที่ผ่านมา

      Learning from maths videos is great though. I enjoy watching them to learn stuff. If I already know the methods it's still great fun. I sometimes binge watch maths videos. My age is only a semiprime: 5×7

    • @dwm1943
      @dwm1943 11 วันที่ผ่านมา +1

      @@AntimatterBeam8954 This is the best of the maths sites that I have found, so far. 35 years old! You're square next year, and in the prime of life the year after that. Me too, if I'm still around, at 83. And is 2027 a prime year? It might be the year I understand Lambert.

    • @AntimatterBeam8954
      @AntimatterBeam8954 9 วันที่ผ่านมา

      @dwm1943 hehe yes I love the properties of numbers. I was playing around with a challenge earlier on. Oh the Lambert W function? I think I understand it, I do make silly mistakes with it a lot though.

  • @InnocentNeuron
    @InnocentNeuron 19 วันที่ผ่านมา +2

    The brute force method is not so formidable. The equation can be simplified to: x^4 + 8x^3 + 30.5x^2 + 58x + 42 = 0. Now with repeated application of the rational root theorem, we first find the 2 coincident real roots at x = (negative)2 and then the 2 complex roots: x = (negative)2 +/- i.sqrt(26)/2

    • @philipfoy7117
      @philipfoy7117 19 วันที่ผ่านมา

      Agreed! Though I just factored it right from scratch without testing the roots.

  • @neuralwarp
    @neuralwarp 19 วันที่ผ่านมา

    *_1st:_* The ^most^ brute force method would be to graph the function and solve by binary (or root2) chop, or try every possible integer.

  • @yoav613
    @yoav613 19 วันที่ผ่านมา +2

    aplusbi😊💯💯💯👍👍🦾💪💥💥

  • @bobbyheffley4955
    @bobbyheffley4955 19 วันที่ผ่านมา

    I set u=x-2 and solved the resulting biquadratic. The only real solution, x=-2, is a double root.

  • @scottleung9587
    @scottleung9587 19 วันที่ผ่านมา

    I also got -2 as the only real solution.

  • @damiennortier8942
    @damiennortier8942 18 วันที่ผ่านมา

    Set y = x + 2
    (y - 1)⁴ + (y + 1)⁴ = -y² + 2
    2y⁴ + 12y² + 2 = -y² + 2
    2y⁴ + 13y² = 0
    Set u = y²
    2u² + 13u = 0
    u(2u + 13) = 0
    u = 0 or u = -13/2
    Then, x = -2 or x = -2 ± sqrt(-13/2)i

  • @rakenzarnsworld2
    @rakenzarnsworld2 19 วันที่ผ่านมา

    x = -2

  • @walterwen2975
    @walterwen2975 18 วันที่ผ่านมา

    An Interesting Equation From Math Olympiads:
    (x + 1)⁴ + (x + 3)⁴ = 1 - (x + 1)(x + 3); x =?
    Let: y = x + 2, x + 1 = y - 1, x + 3 = y + 1; (y - 1)⁴ + (y + 1)⁴ = 1 - (y - 1)(y + 1)
    (y ± 1)⁴ = y⁴ ± 4y³ + 6y² ± 4y + 1, (y - 1)⁴ + (y + 1)⁴ = 2(y⁴ + 6y² + 1) = 1 - (y² - 1)
    2(y⁴ + 6y² + 1) = 1 - (y² - 1) = 2 - y², 2y⁴ + 13y² = 0, y²(2y² + 13) = 0
    y = 0; Double root or 2y² + 13 = 0, y = ± i√(13/2) = ± (i√26)/2
    y = x + 2 = 0, x = - 2 or y = x + 2 = ± i√(13/2), x = - 2 ± (i√26)/2 = (- 4 ± i√26)/2
    Answer check:
    x = - 2
    (x + 1)⁴ + (x + 3)⁴ = (- 1)⁴ + 1⁴ = 2, 1 - (x + 1)(x + 3) = - (- 1) = (1); Confirmed
    x = (- 4 ± i√26)/2, y = x + 2; y² = - 13/2: (y - 1)⁴ + (y + 1)⁴ = 2 - y²
    (y - 1)⁴ + (y + 1)⁴ = 2(y⁴ + 6y² + 1) = 2(y²)(y² + 6) + 2
    = 2(- 13/2)(- 13/2 + 6) + 2 = 2 + 13/2 = 2 - (- 13/2) = 2 - y²; Confirmed
    Final answer:
    x = - 2, Double root; x = (- 4 + i√26)/2 or x = (- 4 - i√26)/2
    Two complex value roots, if acceptable

  • @giuseppemalaguti435
    @giuseppemalaguti435 19 วันที่ผ่านมา

    (x+3)^4+(x+1)(x+3)=1-(x+1)^4...(x+3)(x^3+9x^2+28x+28)=(-2x-x^2)(x^2+2x+2)..(x+3)(x+2)(x^2+7x+14)=-x(x+2)(x^2+2x+2).. 1 soluzione x=-2...(x+3)(x^2+7x+14)=-x(x^2+2x+2)..2x^3+12x^2+37x+42=0..(x+2)(2x^2+8x+21)=0.. 2 soluzione x=-2...x=(-4+i√26)/2..x=(-4-i√26)/2