Power series of tan^-1(x), with radius & interval of convergence, calculus 2 tutorial

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 ก.พ. 2025
  • We will find the power series expansion of tan^-1(x), i.e. the arctan(x). We will do so by integrating the power series of 1/(1+x^2). Remember the radius of convergence stays the same when we integrate or differentiate a power series. HOWEVER, we must do more work to check the convergence at the endpoints of the interval of convergence.,
    Check out my 100 Calculus 2 problems to help you with your calc 2 final: • 100 calculus 2 problem...
    ----------------------------------------
    🛍 Shop my math t-shirt & hoodies: amzn.to/3qBeuw6
    💪 Get my math notes by becoming a patron: / blackpenredpen
    #blackpenredpen #math #calculus #apcalculus
    www.blackpenredpen.com

ความคิดเห็น • 99

  • @vidoshannanthakumar6988
    @vidoshannanthakumar6988 4 ปีที่แล้ว +23

    I used to watch your videos out of interest and now I'm in engineering and everything I have watched has become useful. Thank you sir.

  • @gigispence6011
    @gigispence6011 5 ปีที่แล้ว +11

    Your youtube channel has made my ODE class so much easier. Thank you for putting the time and effort you do into your videos. As a math major, I have encountered many professors who are wildly brilliant but cannot teach to save their lives. You are both extremely brilliant and a gifted educator. Thank you.

  • @BestFriend21
    @BestFriend21 7 ปีที่แล้ว +266

    I feel used

  • @dingusthefourthd4694
    @dingusthefourthd4694 ปีที่แล้ว +1

    This man explains the content better then any professor has.

    • @blackpenredpen
      @blackpenredpen  ปีที่แล้ว +1

      Thanks. Of course there are more awesome professors out there too. 😃

  • @AdvayBasavaraju
    @AdvayBasavaraju 2 ปีที่แล้ว +1

    Love this guy's teaching method. So much energy that it keeps me engaged!

  • @Faikaizen
    @Faikaizen 5 ปีที่แล้ว +2

    You just got one more subscriber sir.
    You look like someone who enjoys what he's teaching. Keep it up!
    Thank you!

  • @oxbmaths
    @oxbmaths 7 ปีที่แล้ว +7

    Long, but very detailed and very clear!
    Very impressive magic wave to erase the board at 17:44! :)

  • @williamallen9145
    @williamallen9145 6 ปีที่แล้ว +14

    "Have you seen this notation before? No because I just made it up!" Love it haha

    • @herbie_the_hillbillie_goat
      @herbie_the_hillbillie_goat 3 ปีที่แล้ว

      In the future math historians will argue vigorously over the origin of this important and powerful notation.

  • @bluejay1101
    @bluejay1101 6 ปีที่แล้ว +40

    This guy is my 1/(1-x)

  • @blackpenredpen
    @blackpenredpen  7 ปีที่แล้ว +36

    The shirt was a gift from my Upward Bound students back in 2011!

    • @botondosvath2331
      @botondosvath2331 7 ปีที่แล้ว

      blackpenredpen Are you a teacher? I tought you are a student :D

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +1

      Yes, I am a teacher.

    • @botondosvath2331
      @botondosvath2331 7 ปีที่แล้ว +1

      blackpenredpen You are looking young, so I tought you are a smart student :D

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว

      Botond Osváth lol thank you

  • @lokeshverma5902
    @lokeshverma5902 5 ปีที่แล้ว

    you sir you are always to the rescue, i really appreciate your videos from deep of my heart. i have been banging my head on the walls trying to prove this using taylor's formula

  • @andrewalbritton6186
    @andrewalbritton6186 3 ปีที่แล้ว

    the smile after the proofs made my day so much better

  • @addisonmyers1264
    @addisonmyers1264 6 ปีที่แล้ว +7

    Thank you so much, this makes sense and you are entertaining to watch!

    • @jeremiahfink5440
      @jeremiahfink5440 2 ปีที่แล้ว

      yea studying is bleak and he literally makes me smile everytime

  • @MathStudent_Moon_Star
    @MathStudent_Moon_Star 5 ปีที่แล้ว +1

    You teach very well and with a lot of positive energy!
    thanks a lot!

  • @josuaschmid501
    @josuaschmid501 4 ปีที่แล้ว

    I like how you make math so positiv and keep on smiling, thanks!

  • @mrstutoring
    @mrstutoring 7 ปีที่แล้ว +1

    I love your work. This video is very very well done and easy to understand. I teach AP Calc AB and BC.

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +2

      steamroller82 thank you very much! *insert hand shake for fellow math teacher*

  • @tabathagross7016
    @tabathagross7016 4 ปีที่แล้ว

    Thank you so much for your videos. You are getting me through college Calc 2

  • @biggerthaninfinity7604
    @biggerthaninfinity7604 4 ปีที่แล้ว +1

    Thank you so much! This video is so well-explained!

  • @amardeepsharma6605
    @amardeepsharma6605 5 ปีที่แล้ว

    Thankyou sir love from India 🇮🇳🇮🇳

  • @tomatrix7525
    @tomatrix7525 4 ปีที่แล้ว

    Wow! I love your solution man

  • @fatihyalcn6332
    @fatihyalcn6332 3 ปีที่แล้ว

    You are my hero!!!! Thanks a lot

  • @thomascholak1391
    @thomascholak1391 ปีที่แล้ว +1

    Great video!!

  • @alexcasillas2900
    @alexcasillas2900 4 ปีที่แล้ว +1

    late night studies, you saved my ass. Thank you. Btw, the way you smile at the camera tho ;)

  • @riachuello
    @riachuello 5 ปีที่แล้ว +6

    I just realized that the arctg(1) = pi/4 is the leibneiz series, omg math is so amazing

    • @DarkRedZane
      @DarkRedZane 4 ปีที่แล้ว +3

      Multiply both arctan(1) and the resulting power series by 4 and you'll get yourself a PIE.

  • @ΚωνσταντινοςΔημητριου-τ4ε
    @ΚωνσταντινοςΔημητριου-τ4ε 5 ปีที่แล้ว +1

    But who guarantees that the alernating series Σ [(-1)^n][x^(2n+1)]/(2n+1) converges to arctan(1) and arctan(-1) for x = +1, -1 in order to assume that arctan(x) can be described by that series on the boundaries of the interval?

  • @kostasch5686
    @kostasch5686 7 ปีที่แล้ว +1

    Just a small correction. At 20:20 you say b(n+1)+oo the denominators are equal. If the series is alternating a.k.a. (- 1)^n, you only need b(n)->0 for it to converge.

    • @MrRyanroberson1
      @MrRyanroberson1 7 ปีที่แล้ว

      I think youtube's (-crossout-) mechanism might have got you? may wanna edit that.

    • @MrRyanroberson1
      @MrRyanroberson1 7 ปีที่แล้ว

      also, b(n+1) is less than b(n) because infinity is not considered, i.e. the formula for e is (1+1/n)^n, but for n=infinity the answer is (1+0)^infinity=1, which is obviously wrong.
      so you check along the way, and lo and behold: [1/9=1/(2*4+1)]

    • @kostasch5686
      @kostasch5686 7 ปีที่แล้ว

      I didnt know how to edit it out, a simple space seems to do the trick, thanks. As far as the limit is concerned, of course you set n->+oo. In this case you go like this b(n+1)/b(n)=(2n+1)/(2n+3)=(1+1/(2n))/(1+3/(2n))=(1+0)/(1+0)=1 as n->+oo. That is why the series sum(1/(2n+1)) does not converge. The limit with e that you mentioned is an undefined form that is why you must try to figure it out in another way.

  • @lokeshverma5902
    @lokeshverma5902 5 ปีที่แล้ว +1

    actually if you use ratio test you will see that this infinite series always converge (x belong to real set )but does it converge to give arctanx ? i am saying that at -1 and 1 it is right to say series converges but how do we know that it converges to produce arctanx again?

  • @ashur026
    @ashur026 4 ปีที่แล้ว

    Thank you your teaching id amazing.

  • @johanrichter2695
    @johanrichter2695 2 ปีที่แล้ว

    Checking the power series converges at the endpoints is easy, it is more tricky to check that it converges to arctan. Abel's theorem is what one would use here.

  • @iñigote
    @iñigote 2 ปีที่แล้ว

    Great work

  • @陈明年
    @陈明年 4 ปีที่แล้ว

    this is why I love my best friend

  • @alphalfa7
    @alphalfa7 2 ปีที่แล้ว

    I hate math and still ended up smiling after the first 30 secs of the video hehe

    • @agrajyadav2951
      @agrajyadav2951 2 ปีที่แล้ว

      Ur an idiot if u hate mathematics

  • @KuldeepSingh-wo4yl
    @KuldeepSingh-wo4yl 5 ปีที่แล้ว

    Simply amazing , thnq Very much 👍

  • @johnchang8279
    @johnchang8279 4 ปีที่แล้ว

    Also, you can get a series good for |x|>1 if you realize that the series using 1/x as the argument gives the complementary angle.

  • @dancapps3374
    @dancapps3374 2 ปีที่แล้ว

    How about an error formula for if we use a partial sum of the series (like say use k terms from the series , then get a formula for the max error in the approximation in terms of k ) . ?

  • @rwh777
    @rwh777 6 ปีที่แล้ว

    Very well done, thank you!

  • @tetsujin6345
    @tetsujin6345 4 ปีที่แล้ว

    I am quite great at math.but sometimes I come up blank looking at this dudes math calculus

  • @sergiolucas38
    @sergiolucas38 3 ปีที่แล้ว +1

    nice video

  • @yxlxfxf
    @yxlxfxf 7 ปีที่แล้ว +8

    6:48 can't you just throw away the absolute value since x^2 is always positive?

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +4

      No, because we need to solve for the radius of convergence, which is in the form of |x-a|

    • @yxlxfxf
      @yxlxfxf 7 ปีที่แล้ว +3

      blackpenredpen oh, I should have watched it till the end then :)

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +10

      yup,

  • @elena25rdz
    @elena25rdz 6 ปีที่แล้ว +1

    thank so much! best friend

  • @sajjad213
    @sajjad213 4 ปีที่แล้ว

    Series converge for x equals to 1. but why it converges to pi/4? what is the proof?

  • @bullinmd
    @bullinmd 4 ปีที่แล้ว

    Why is 4 * tan^-1(x) so horrible in estimating pi?

  • @MrRyanroberson1
    @MrRyanroberson1 7 ปีที่แล้ว

    so.... I'm good at algebra, trig, number theory, e, vectors, derivatives, (because of you, integrals), and I know a few identities of pi, but all I can assume here is (by the looks of it) is that for x=1, this sum gives pi? or some pi-based term? I think...

    • @gdsfish3214
      @gdsfish3214 7 ปีที่แล้ว

      Ryan Roberson its actually pi/4

    • @MrRyanroberson1
      @MrRyanroberson1 7 ปีที่แล้ว

      that's the one! but it seems a bit off: if there is pi/4 and 6/pi, and pi^2/2... where do these arbitrary numbers keep coming from? is there some formula that makes an infinite series for (pi/j)^k?

    • @gdsfish3214
      @gdsfish3214 7 ปีที่แล้ว

      I know it is pi/4 ,because if you look at what arctan does, if you plug in opposite/adjacent of a right triangle into the arctan function you will get the angle. And if you plug in 1, that means
      opposite/adjacent = 1 which means both have the same lenght so the angle must be 45 degrees = pi/4
      i am not sure if such formulas exist, i believe these numbers will just pop up if you plug in the right number into the right function

    • @shehannanayakkara4162
      @shehannanayakkara4162 7 ปีที่แล้ว

      Interestingly, this means that pi/4 = 1 - 1/3 + 1/5 -1/7... . This means that you can calculate pi just by doing 4 - 4/3 + 4/5 - 4/7...

    • @GhostyOcean
      @GhostyOcean 5 ปีที่แล้ว

      @@shehannanayakkara4162 yes but it converges SUPER slowly. There are better, more efficient ways to calculate pi by hand. StandupMaths has some good videos on calculating pi

  • @gdsfish3214
    @gdsfish3214 7 ปีที่แล้ว

    I have a question,
    the radius of convergence is 1, that means if you plug in a number bigger than one or smaller that -1 the series diverges, but I know that there are values for arctan(x) where x is bigger than one.. how do you calculate those values?

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +1

      Ah! In those cases.. you will have to change the center and use the Taylor formula to find the power series. This is just one quick way that I can think of as of now.

  • @niaranoctyrna3754
    @niaranoctyrna3754 6 ปีที่แล้ว +2

    WHY CAN'T YOU BE MY TA?!?!!

  • @PYTHAGORAS101
    @PYTHAGORAS101 5 ปีที่แล้ว

    0 is not really a number because it does not share the elemental properties of numbers.0 does not have a ratio to all other numbers like numbers do.It is a error in math to treat zero like it is a number so you should not let x = 0,you must use a positive number to get meaningful results.

    • @GhostyOcean
      @GhostyOcean 5 ปีที่แล้ว

      The radius of convergence is 1 so the series outputs valid answers for all inputs [-1,1], not just positive.
      If you're REALLY gonna argue about zero, consider that numbers are completely abstract and made up. Arguing that 0 "isn't really a number" is the same as arguing that "Optimus Prime is a ghost busters," whether it is true or not has no meaning and doesn't affect anything since it's all made up.

  • @gutterball10
    @gutterball10 7 ปีที่แล้ว

    thanks for the knowledge.

  • @vriskanon8183
    @vriskanon8183 7 ปีที่แล้ว

    Hey BPRP, my friend was challenged to prove that (1+x)e^x = sum of (1+k)x^k/k! WITHOUT using differentiation. Do you have any ideas?

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +1

      Am I allowed to start off with the fact that e^x=sum of x^k/k! ?
      If so, this is just about arithmetic of series.
      (1+x)e^x
      =e^x+x*e^x
      =sum of x^k/k! + x* ( sum of x^k/k!)
      and you will have to fix the power, index, etc
      you can see the last part of this video for fixing index. th-cam.com/video/X8c64zq8Lno/w-d-xo.html
      And maybe I will make a quick video tmr before my classes.

  • @lukschs1
    @lukschs1 5 ปีที่แล้ว

    maestro ,!

  • @MrGeorge1896
    @MrGeorge1896 7 ปีที่แล้ว +4

    Great series of tutorials, but this time you spent so much time on the totally obvious part and missed to present a solution for abs(x)>1

    • @kostasch5686
      @kostasch5686 7 ปีที่แล้ว

      By power series, I think he means taylor series. Correct me iff I m wrong but for abs(x)>1 arctanx has Laurent series, so he wont try to dive into that.

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +3

      MrGeorge1896 I know I spent a lot of time but it was for my calc2 students who are studying series for the first time.

    • @Kindiakan
      @Kindiakan 7 ปีที่แล้ว

      which is why perhaps u re-did the alternating series test instead of using the result that the second infinite series is the negation of the first, and since the first converges, so does the second.

  • @hamzakhairi4765
    @hamzakhairi4765 7 ปีที่แล้ว

    What university do you go to?

  • @omermuharremyagcioglu
    @omermuharremyagcioglu 3 ปีที่แล้ว

    great

  • @manishashinde8669
    @manishashinde8669 5 ปีที่แล้ว

    Solve tan inverse x using tylers theorm

  • @Shiinamusiclyricssubs
    @Shiinamusiclyricssubs 4 ปีที่แล้ว

    lies i see a blue pen

  • @john-athancrow4169
    @john-athancrow4169 6 ปีที่แล้ว

    Like c1+c2+...=original c (s.o.c's)

  • @vanshrajsingh1627
    @vanshrajsingh1627 3 ปีที่แล้ว

    It mesns pi is rational number

  • @Newing-rw8hm
    @Newing-rw8hm 7 ปีที่แล้ว

    Hi, I'm korean

  • @biggerthaninfinity7604
    @biggerthaninfinity7604 4 ปีที่แล้ว

    Change your name to blackpenredpenbluepen 😂

  • @john-athancrow4169
    @john-athancrow4169 6 ปีที่แล้ว

    !

  • @TheRamiel001
    @TheRamiel001 7 ปีที่แล้ว

    dude... do you realize you're saying "isn't it" in completely inapplicable sentences...?

    • @blackpenredpen
      @blackpenredpen  7 ปีที่แล้ว +3

      Juliano Ciaramello come on man

    • @ItsMikey228
      @ItsMikey228 7 ปีที่แล้ว +3

      Rip on someones English when they're providing free, excellent math help. People like you are never satisfied. Get over yourself or watch someone else.

    • @papajack2205
      @papajack2205 7 ปีที่แล้ว

      come on, man

    • @MrRyanroberson1
      @MrRyanroberson1 7 ปีที่แล้ว +3

      I'm neutral here, but in terms of context, I just learn to filter things like that, my brain translates that to "right?" rhetorical question, as it has the same meaning as used by bprp. but one thing you don't do is insult someone for saying their sayings (unless that saying encourages crime... isn't it?)

    • @TheRamiel001
      @TheRamiel001 7 ปีที่แล้ว +1

      I'm not trying to insult him! I'm just wondering if he knows what he's saying! he's using the phrase really oddly is all!
      I watch this channel all the time! love this guy!