Braids in Higher Dimensions - Numberphile

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 ก.พ. 2025
  • Braids and the fourth dimension, with Dr Zsuzsanna Dancso.
    More links & stuff in full description below ↓↓↓
    More videos with Dr Zsuzsanna Dancso: bit.ly/dancso_p...
    Extra bit from this interview: • Braids (extra footage)...
    Animation by Pete McPartlan.
    Numberphile is supported by the Mathematical Sciences Research Institute (MSRI): bit.ly/MSRINumb...
    We are also supported by Science Sandbox, a Simons Foundation initiative dedicated to engaging everyone with the process of science.
    NUMBERPHILE
    Website: www.numberphile...
    Numberphile on Facebook: / numberphile
    Numberphile tweets: / numberphile
    Subscribe: bit.ly/Numberph...
    Videos by Brady Haran
    Patreon: / numberphile
    Brady's videos subreddit: / bradyharan
    Brady's latest videos across all channels: www.bradyharanb...
    Sign up for (occasional) emails: eepurl.com/YdjL9

ความคิดเห็น • 749

  • @numberphile
    @numberphile  7 ปีที่แล้ว +135

    More videos with Dr Zsuzsanna Dancso: bit.ly/dancso_playlist
    Extra bit from this interview: th-cam.com/video/z39k3qMnSRM/w-d-xo.html

    • @ozdergekko
      @ozdergekko 7 ปีที่แล้ว +15

      Zsuzsanna is back! Yaaaay!

    • @andraskoleszar9759
      @andraskoleszar9759 7 ปีที่แล้ว +4

      Numberphile Could you show this to Zsuzsanna please! Szia Zsuzsi, nagyon tetszett a videó, örülök, hogy ujra itt voltál a csatornán, várom a következő videódat!😀

    • @somitomi
      @somitomi 7 ปีที่แล้ว +3

      Jó kérdés.
      Amúgy üdvözlöm Zsuzsannát, ha véletlenül olvasná.

    • @balintnk
      @balintnk 7 ปีที่แล้ว +1

      egy plusz biztosan

    • @gergelybecso8288
      @gergelybecso8288 6 ปีที่แล้ว

      Hmm... Rá kell szokjak, hogy lecsekkoljam az előadó nevét... Magyarok mindenhol :D

  • @fetchstixRHD
    @fetchstixRHD 7 ปีที่แล้ว +580

    The animations are actually amazing and really do help to visualise what's going on.

    • @pmcpartlan
      @pmcpartlan 7 ปีที่แล้ว +31

      fetchstix Thanks!

    • @MathAndComputers
      @MathAndComputers 7 ปีที่แล้ว +10

      What software do you use, Pete? Do you have a ton of custom tools/scripts you've developed specifically for Numberphile and related animations? (I've wondered for quite a while.)

    • @pmcpartlan
      @pmcpartlan 7 ปีที่แล้ว +12

      Hi, just seen this. Nothing specialised really just After Effects and Blender for 3D stuff.

  • @spinor
    @spinor 7 ปีที่แล้ว +89

    I was wondering what they meant when they said a Klein Bottle doesn't intersect itself in 4D. This cleared it up nicely, thanks!

  • @antoineroquentin2297
    @antoineroquentin2297 7 ปีที่แล้ว +48

    It's amazing listening to people who put so much effort in solving problems from which I didn't even realized that they were problems.

  • @Lugmillord
    @Lugmillord 7 ปีที่แล้ว +206

    "how can you prove that we don't live in 4 dimensions?" "My braids don't untangle."

    • @Dexuz
      @Dexuz 4 ปีที่แล้ว +2

      AAAAAAAAAAAAAAA, its you.

  • @Eetarsaurus
    @Eetarsaurus 7 ปีที่แล้ว +2

    I could watch Dr. Dancso all day.

  • @KaiCyreus
    @KaiCyreus 7 ปีที่แล้ว +1591

    I guess today, you could say we're getting.. Braidy.

    • @markcelemen
      @markcelemen 7 ปีที่แล้ว +22

      I bet you liked your own comment ;)

    • @senorgooba7360
      @senorgooba7360 7 ปีที่แล้ว +15

      Cyreus I like you

    • @MagicGonads
      @MagicGonads 7 ปีที่แล้ว +12

      Hey now, I made that joke first, pay me royalties!

    • @KaiCyreus
      @KaiCyreus 7 ปีที่แล้ว +20

      Magic Gonads So sorry sir, I owe you 0.62 internets.

    • @meinbuch9458
      @meinbuch9458 7 ปีที่แล้ว +1

      Cyreus How unoriginal.

  • @1verstapp
    @1verstapp 7 ปีที่แล้ว +154

    in 4-D, no-one can have bad hair day.

    • @gabrielkellar1935
      @gabrielkellar1935 5 ปีที่แล้ว +10

      I bet my pillow can find a way around that

    • @narfharder
      @narfharder 3 ปีที่แล้ว +1

      *_Pippi Longstocking_*_ has entered the chat_

    • @PC_Simo
      @PC_Simo 2 ปีที่แล้ว +1

      Or everyone can 🤔.

    • @Triantalex
      @Triantalex ปีที่แล้ว

      false.

  • @AntonLejon
    @AntonLejon 3 ปีที่แล้ว +5

    This is the first time I've had anything close to an intuitive understanding of 4-dimensionality. Thank you!

  • @yep_2431
    @yep_2431 4 ปีที่แล้ว +5

    I like how excited the guests get

  • @fallenasleep7247
    @fallenasleep7247 7 ปีที่แล้ว +30

    This was a really cool vid. I don't have anything to say, I just want to comment because I'm under the impression that commenting helps promote youtube vids.

  • @KurtSchwind
    @KurtSchwind 7 ปีที่แล้ว +15

    Every time I watch Numberphile I'm impressed with the animations which help narrate the idea. This is no exception. Really great work.

  • @singerofsongss
    @singerofsongss 7 ปีที่แล้ว +1

    This is one of the only discussions of the 4th dimension that I've really been able to visualize and understand! Good on Dr. Dancso for putting such a foreign concept into simple analogies.

  • @Sam_on_YouTube
    @Sam_on_YouTube 7 ปีที่แล้ว +3

    I really like the idea of picturing it as rings moving through 3 dimrnsional space over the span of a movie. It makes it much easier to picture how they are and are not allowed to move through each other.

  • @Maharani1991
    @Maharani1991 7 ปีที่แล้ว +1

    Absolutely loved the tiny piece of music used for the cartoon rings flying through each other. :)

  • @hindigente
    @hindigente 7 ปีที่แล้ว +5

    One of the most interesting Numberphile videos ever, and the animation was awesome as well. I wish to see Dancso more often!

  • @baronDioxid
    @baronDioxid 7 ปีที่แล้ว +4

    It's Klein-bottles and Möbius-loops all over again!

  • @modolief
    @modolief 7 ปีที่แล้ว +2

    Braid group: the braid group on n strands (denoted Bn), also known as the Artin braid group, is the group whose elements are equivalence classes of n-braids (e.g. under ambient isotopy), and whose group operation is composition of braids. Example applications of braid groups include knot theory, where any knot may be represented as the closure of certain braids (a result known as Alexander's theorem); in mathematical physics where Artin's canonical presentation of the braid group corresponds to the Yang-Baxter equation; and in monodromy invariants of algebraic geometry. (wikipedia)

  • @turtles10
    @turtles10 7 ปีที่แล้ว +90

    WILHELM 10:11

    • @JahLuvzU
      @JahLuvzU 7 ปีที่แล้ว +10

      Damn, I hoped I was the first to notice, but the sound is just so recognizable.

    • @sGnNPlayer
      @sGnNPlayer 7 ปีที่แล้ว +2

      Tristen Roddenberry what has been heard cannot be unheard

  • @wongmjane
    @wongmjane 7 ปีที่แล้ว +460

    The concept sounds like that old video about how to turn a sphere inside out

    • @WaveOfDestiny
      @WaveOfDestiny 7 ปีที่แล้ว +47

      Jane Wong that video stayed in my recommanded for so long i wasn't even intrested and i regret clicking on it

    • @AexisRai
      @AexisRai 7 ปีที่แล้ว +110

      YOU MUSTN'T TEAR OR CREASE IT

    • @spencerjohnson925
      @spencerjohnson925 7 ปีที่แล้ว +20

      ​ ​ tOpoLoGy

    • @davidb5205
      @davidb5205 7 ปีที่แล้ว +60

      It's the same field: Differential Topology. Which a lot of people think is useless and theoretical but is actually practically used to describe protein folding and cell division. (Not that math NEEDS to be of practical use in order to be studied)

    • @Astronomy487
      @Astronomy487 7 ปีที่แล้ว +4

      Aexis Rai IM LAUGHING TOO HARD

  • @danieljoung5398
    @danieljoung5398 7 ปีที่แล้ว +5

    Well done man. This video is so quality it's incredible.

  • @tonysouter8095
    @tonysouter8095 7 ปีที่แล้ว +4

    Wow, great animations by Pete McPartlan.

  • @tefkah
    @tefkah 3 ปีที่แล้ว +1

    This video saved my thesis, thank you Brady and Dr Dansco

  • @elneutrino90
    @elneutrino90 7 ปีที่แล้ว +32

    I feel like a Commodore 64 trying to run Wolfram Mathematica, it's simply too much for my processoer

  • @colecarter2829
    @colecarter2829 7 ปีที่แล้ว +2

    Thank you for this video. I have struggled to grasp the mechanics of the supposed intersections in 4d objects like klein bottles, but the ring analogy helped me visualize what is actually happening.

  • @markcelemen
    @markcelemen 7 ปีที่แล้ว +8

    Yay a new video from Numberphile!

  • @Galakyllz
    @Galakyllz 7 ปีที่แล้ว +1

    These animations are absolutely awesome. Great job.

  • @SamuelHauptmannvanDam
    @SamuelHauptmannvanDam 7 ปีที่แล้ว +2

    Great explanation, I've always wanted to be better at thinking of things in higher dimensions and this helps a lot!

  • @keenantroll5151
    @keenantroll5151 7 ปีที่แล้ว +25

    the tangle pointed out at 2:30 CAN be undone, if you are allowed to stretch one band all the way around the plank. or rotate one plank. (considering only the two highlighted strands)

  • @joshpratt339
    @joshpratt339 7 ปีที่แล้ว +3

    I don't understand any of these videos but i still love them.

  • @franciscobuades3677
    @franciscobuades3677 7 ปีที่แล้ว +1

    I've always found it really hard to think in more than 3 dimensions, but this helped a lot! Great work, as per usual! :)

  • @mversantvoort
    @mversantvoort 7 ปีที่แล้ว +5

    The animations are super cool and really helpful, thanks!

  • @kmz8160
    @kmz8160 3 ปีที่แล้ว

    Listening to this magic voice every year.

  • @jenniferclark469
    @jenniferclark469 7 ปีที่แล้ว +1

    Great video - I now think I understand the fourth dimension so much better :)

  • @asitisj
    @asitisj 4 ปีที่แล้ว

    It's like rigorous, abstract justification and intuition if not proof of topology. Super warped space-time . Very imaginative, very succinct

  • @Robi2009
    @Robi2009 7 ปีที่แล้ว +1

    Dr Zsuzsanna is back!

  • @seanp4644
    @seanp4644 7 ปีที่แล้ว

    Pause the video at 13:00.
    This is truly a high school level maths channel.

    • @allie-ontheweb
      @allie-ontheweb 7 ปีที่แล้ว

      The Minor Miner it was more showing the pattern of which 'dimensional' objects could successfully braid with which

  • @andrewriachi9222
    @andrewriachi9222 7 ปีที่แล้ว +1

    Wow, I'm very impressed with the animations. Well done.

  • @maxmusterman3371
    @maxmusterman3371 7 ปีที่แล้ว +3

    this seems related to knots. very interesting video, thank you I love how mathemeticians are able to think about these concepts in diffrent dimensions.

    • @PC_Simo
      @PC_Simo 2 ปีที่แล้ว

      This *_IS_* related to knots.

  • @Nittweed
    @Nittweed 7 ปีที่แล้ว +1

    This video shows a really nice way to imagine movement and connectivity in four dimensions which I'd never encountered before, by hiding or collapsing one of the three dimensions we can already see/imagine, and then expanding the hidden fourth one. Really gives a lot of insight into interconnectivity (or lack thereof) in 4-dimensional space. Thanks!

  • @user-uz7gb7gb4v
    @user-uz7gb7gb4v 7 ปีที่แล้ว +1

    When you visualise the 4th dimension as stacked up timeframes and the braid as a 1d "fly", it's also easier to see how the 3d braid can be untangled in the 4th dimension: the fly just needs to wait for a short time for the other fly to move, and then it can go right through where, from its perspective, the obstacle was.

  • @maxilexow
    @maxilexow 7 ปีที่แล้ว +1

    Great video, very intuitive analogies

  • @Thorr26
    @Thorr26 7 ปีที่แล้ว +4

    Interesting and great animations. Great job! Keep it up!

  • @ShaunaJade96
    @ShaunaJade96 7 ปีที่แล้ว +1

    Brilliant animations!

  • @SendyTheEndless
    @SendyTheEndless 7 ปีที่แล้ว +1

    That was beautiful and mind-expanding!

  • @skeletonrowdie1768
    @skeletonrowdie1768 7 ปีที่แล้ว +1

    awesome explanation on visualizing something like a 4D möbius! thanks!

  • @mathgeniuszach
    @mathgeniuszach 6 ปีที่แล้ว +2

    I think its easier to imagine by creating two rooms, and the second room is a jump of one integer unit in the 4th dimension. When you move (or teleport if you want to say) into the second room, you can easily move to the other side of the second room (since the strand is not there) and then move back over into the first room, bypassing the strand entirely.

  • @seanferney3621
    @seanferney3621 7 ปีที่แล้ว +2

    That was explained beautifully.

  • @jesterjames7633
    @jesterjames7633 5 ปีที่แล้ว

    mind blown and melted at the same time.

  • @IsoYear
    @IsoYear 2 ปีที่แล้ว

    Wow this explained the fourth dimension. I have always struggled with visualizing (in 3d too lol) but this cleared up a lot of questions i had

  • @legendgames128
    @legendgames128 4 ปีที่แล้ว +2

    10:11 ah yes, a Wilhelm scream in a mathematical channel.

  • @joahchewbhaka5679
    @joahchewbhaka5679 7 ปีที่แล้ว +1

    that was great! What an imagination! Love the examples, especially the one that used movie frames.

  • @DoctorCool-y8j
    @DoctorCool-y8j 7 ปีที่แล้ว +1

    These concepts are connected to string theory. I think that connection deserves another video.

  • @HEXVeKtAr1
    @HEXVeKtAr1 7 ปีที่แล้ว +2

    It blows my mind to see Numberphile's videos. What gets me so badly is how insanely clever these people are, and how incredibly stupid I feel compared to them.. It's a good thing to be put in your place every now and then, because no matter how good you think you are at something, there''s always someone who is better! So I applaud how vastly smart these humans are! They represent the pinnacle of our species' development! They prove that humans (while some are very stupid) can be mind-bogglingly clever too.

  • @razlotan7504
    @razlotan7504 7 ปีที่แล้ว +105

    The teapot analogue could not be more British

    • @pmcpartlan
      @pmcpartlan 7 ปีที่แล้ว +40

      Raz Lotan Actually the teapot's from Utah.

    • @SgtSupaman
      @SgtSupaman 7 ปีที่แล้ว +6

      You're both wrong. The teapot is originally from China.

    • @X_Baron
      @X_Baron 7 ปีที่แล้ว +7

      The Utah Teapot was originally made by a Brit, while working in Utah.

    • @joshuarosen6242
      @joshuarosen6242 7 ปีที่แล้ว +5

      Regardless of where teapots were invented or where any particular one was made, the analogy is indeed very British.
      We love tea. Which other country has a national sport where it stops for tea?

    • @joshuarosen6242
      @joshuarosen6242 7 ปีที่แล้ว +2

      That looks much more like a sort of teapot common in the UK called a Brown Betty than a Utah teapot. The Utah teapot has straighter sides on its top half and the little knob on the lid is much taller.

  • @clobbopus_used_beat
    @clobbopus_used_beat 7 ปีที่แล้ว

    Great videos and love the new animations!!

  • @MaksiZockt
    @MaksiZockt 7 ปีที่แล้ว +1

    2:43 think a little bit outside the box! if you could stretch the strings infinitely, you could aswell stretch them around the wooden plank (here stretch the yellow one around the bottom plank by going counter clockwise) and untangle them

  • @fredschneider7475
    @fredschneider7475 4 ปีที่แล้ว +6

    That was really interesting.
    I was wondering: Is there an analog in 4-D for threee 1-dimensional braids interacting together so that they tangle in a way that two 1-dimensional braids can in 3-D?

  • @astro2191
    @astro2191 7 ปีที่แล้ว +1

    That is one hell of a good analogy for the 4th dimension!

    • @PC_Simo
      @PC_Simo 2 ปีที่แล้ว +1

      Indeed; and it’s precisely that: Analogy 🎯. Sadly, many people don’t seem to realize that 😔.

  • @copperdragon9286
    @copperdragon9286 7 ปีที่แล้ว +2

    This ant metaphor is a very nice way for visualization. But I still had some problems to understand what it means to untangle strings when seen in 2+1 dimensional space (one dimension replaced by time to make this movie of ants crawling in a plane ).
    The explanation that is really missing (I would say at 9:10) is:
    Why cant't the paths of the ants be disentangled? Here you need to unerstand what it means to actually disentangle them. Basically you need to create another movie where the paths are just as you wish them to be (every ant sitting still in its initial position), and a huge number (actually infinitly many) intermediate movies in which the paths only differ a tiny bit from the path of the previous movie until you can make your final movie.
    When you try this with the simplest case of two ants just circling each other, you will find that there is no smooth transition between a movie with ants circling and a movie with ants not circling. There will always be some movie in between where the ants actually have to go through each other.

  • @Theminecraftian772
    @Theminecraftian772 7 ปีที่แล้ว +5

    So, if I had my headphones in my pocket, and they were all tangled up, all I would need to do is push them into a 4D space for a bit? Just jiggle them around form them to move in 4D, then pull it back to 3d? Nice.

  • @poutouellet
    @poutouellet 7 ปีที่แล้ว +10

    "I'VE HAD IT WITH THESE MOTHERF****** ANTS ON THIS MOTHERF****** PLANE!" -Samuel L Jackson

  • @cr-gn6rr
    @cr-gn6rr 7 ปีที่แล้ว

    nice video Braidy

  • @mrpengywinz123
    @mrpengywinz123 7 ปีที่แล้ว

    She is my favorite numberphile narrator Hands down , sorry Parker sorry Grimes you're the runner ups to the real mvp

  • @anthonyfrantz884
    @anthonyfrantz884 7 ปีที่แล้ว +1

    I think I might solved it ,check it out .Before we start we see that the blue string is already tangled . First you take the 2nd string (from the left to the right ) and you pull it above the uper plank .Now the 2nd and third strings are untangled .What is left is the 1st and the last .What you have to do is just to pull the first above the uper plank and it is done

  • @56kk12
    @56kk12 7 ปีที่แล้ว

    Wow.
    My mind is so open after that.

  • @SerratedMilliner
    @SerratedMilliner 4 ปีที่แล้ว +1

    What I find most interesting is that, if you ascribe to the theory that the 4th dimension is time, and each moment of our existence is a cross section of it, you can effectively make braids or tie knots in 4 dimensions by just moving 3D objects around!

    • @mydemon
      @mydemon 3 ปีที่แล้ว +1

      Time cannot be the fourth dimension or you wouldn't have the results in the videos. Two ropes cannot cross each other even if you add time as a dimension.

    • @PC_Simo
      @PC_Simo 2 ปีที่แล้ว +1

      @@mydemon Exactly 👌🏻🎯!

    • @PC_Simo
      @PC_Simo 2 ปีที่แล้ว +1

      @Serrated Miller Frankly; whenever I now hear about time being the 4th dimension, it almost makes me physically nauseous; just, because it’s so absurd a ”theory”. Time is nothing but motion and change. That’s it. I’m definitely a minimalist, when it comes to my idea of, what time is (if it even exists); but, for some reason, most people seem to consider the spacetime-nonsense a Divine Canon. Just, because Einstein said so, doesn’t mean that time is some sorta physical fabric, connected to space. It’s not; it has got nothing to do with space; and it’s not a dimension. I find it mind-boggling, how so many people don’t even dare think for themselves, or question these dogmas, like the ”Theory of Relativity”; out of fear of disproving their Divine Canon / Holy Scriptures. I can only wonder, what was Einstein smoking, when he came up with such an absurd idea. 🤯

  • @LokNWykLeer
    @LokNWykLeer 7 ปีที่แล้ว

    This actually helped me understand the 4th dimension a bit better! :D

  • @andymcl92
    @andymcl92 7 ปีที่แล้ว +2

    Sometimes I hate my 3D mind. Those braids with rings looked really interesting, but I just can't picture them in their 4D glory!

  • @sam111880
    @sam111880 7 ปีที่แล้ว +1

    nice explaination also you probably considered the question of links can be closely related by closing up the top board with the bottom board one has a way to classify n-dimensional links to n-dimension braid theory so if you have an invariant for one you can uses it for the other.

    • @PC_Simo
      @PC_Simo 2 ปีที่แล้ว

      Links *_ARE_* closely related.

  • @shrimatkapoor2200
    @shrimatkapoor2200 7 ปีที่แล้ว +1

    I love that animation of how the rings fly through each other so funny

  • @petermikulski6651
    @petermikulski6651 2 ปีที่แล้ว +1

    This is awesome

  • @andreadelzoppo9403
    @andreadelzoppo9403 7 ปีที่แล้ว

    The name "Numberphile" with the hearth on top of the "i" always made me unconfourtable...

  • @MrPSyman3
    @MrPSyman3 7 ปีที่แล้ว +1

    This is the only 3+1D video I've seen that actually has a decent-looking analogy in it

  • @Halibali
    @Halibali 7 ปีที่แล้ว +4

    7:04 Looks like a sneaky ninja move :D

  • @alkismavridis1
    @alkismavridis1 7 ปีที่แล้ว +1

    Very nice video! Thanks :)

  • @Yinas
    @Yinas 7 ปีที่แล้ว +3

    ok this got really interesting in the second half. now my mind is all tangled...

  • @ravneetsingh1499
    @ravneetsingh1499 7 ปีที่แล้ว +79

    this video was filmed in 2014 but uploaded today....any reasons?

    • @lucianodebenedictis6014
      @lucianodebenedictis6014 7 ปีที่แล้ว +2

      Ravneet Singh you mean the fact the the other two videos that seem to be filmed together were published in 2014?

    • @ravneetsingh1499
      @ravneetsingh1499 7 ปีที่แล้ว +3

      yuuup

    • @lucianodebenedictis6014
      @lucianodebenedictis6014 7 ปีที่แล้ว +2

      Ravneet Singh nice one checking the playlist. By the way no clue

    • @HistoricaHungarica
      @HistoricaHungarica 7 ปีที่แล้ว +27

      It matured enough to be safely consumed.
      (probably the animation took some time... and then to edit together)

    • @pronounjow
      @pronounjow 7 ปีที่แล้ว +2

      Wait, what?

  • @Si-Al-Ti
    @Si-Al-Ti 7 ปีที่แล้ว +3

    There's a pc game being developed called Miegakure that takes place in a 4 dimensional world. Where if you encounter a wall to high to climb you can scroll through the different 3d projections of the underlying 4d space to see if theres maybe a different path you can take. check it out :)

  • @leo37ok
    @leo37ok 7 ปีที่แล้ว

    Great video

  • @Fiifufu
    @Fiifufu 7 ปีที่แล้ว

    10:30 "rings". I'm glad you became a mathematician.

  • @davecrupel2817
    @davecrupel2817 6 ปีที่แล้ว

    Most adorable professor ever ^-^

  • @snazz1363
    @snazz1363 7 ปีที่แล้ว +151

    Who else is watching this on their 5 dimensional tesseract in the year 20170

    • @recklessroges
      @recklessroges 7 ปีที่แล้ว +12

      I'm on my 4d device in 12017

    • @Kanengizer
      @Kanengizer 7 ปีที่แล้ว +9

      Snazz I'm on my 2d device in 17

    • @TheCivilProtector
      @TheCivilProtector 7 ปีที่แล้ว +1

      sorry bro but that would be physically impossible...

    • @Firebolt391d
      @Firebolt391d 7 ปีที่แล้ว +2

      To quote an old friend of mine: "Imagination is more important than knowledge." ;)

    • @-homechord-2908
      @-homechord-2908 7 ปีที่แล้ว +4

      Snazz a tesseract the is literally just a 4d cube. Man, marketing companies in the future must be really bored.

  • @claytonsteele96
    @claytonsteele96 7 ปีที่แล้ว +1

    I just wanted to say that adding a 4th dimension does not mean that the two strings can pass through each other [6:30]. It means that there may be a way to move around each other through the new 4th dimension. Just like adding a third dimension does not allow the ant to pass through the 2d wall. but instead allows the ant to move through the third dimension and around the wall.
    or am i missing something?

  • @annaarkless5822
    @annaarkless5822 3 ปีที่แล้ว +1

    i went to a lecture at cambridge uni for a level women in maths that was basically this exact video, but somehow numberphile explained it better than the cambridge lecturer (no shade to that lecturer tho, it was fascinating even though i couldnt follow along completely)

  • @_Frosh_
    @_Frosh_ 7 ปีที่แล้ว +1

    this is beautiful...

  • @TheGuruNetOn
    @TheGuruNetOn 2 ปีที่แล้ว +1

    11:59 reminds me of tunnels in a gophers nest. In fact it reminds me of an ancient creature that once dug tunnels and the only remaining thing that remains of its existence are those tunnels. Don't remember the video that I saw about these tunnels but I do remember the shape of the tunnels.

  • @morvanoot
    @morvanoot 7 ปีที่แล้ว +1

    This is (at least for me!) one of the best video to think about and understand what really is the 4th dimension. Thank you Numberphile and Dr Dansco! :-)

  • @Zenene-ok5el
    @Zenene-ok5el 7 ปีที่แล้ว +2

    For understanding the basics of how the fourth dimension would work and look like, I strongly reccoment Flatland, a book by Edwin A. Abbott. It makes both for an interesting mathematical reading and a biting Victorian satire.

    • @flounderflounder6833
      @flounderflounder6833 3 ปีที่แล้ว +1

      There's a movie about it somewhere on TH-cam aswell

  • @nemethdaniel6384
    @nemethdaniel6384 7 ปีที่แล้ว +2

    Hi! :) Interesting video. I have a question:
    What is changing if you have foliation (like 3+1 dimensions). You have a foliated space+time, and 1 dimensional lines crossing the slices. In this case you can create knots of 1 dimensional lines in 3+1 dimensional spacetime. Is it right?

    • @stevethecatcouch6532
      @stevethecatcouch6532 7 ปีที่แล้ว +1

      How is foliated space-time different from regular space-time?

    • @nemethdaniel6384
      @nemethdaniel6384 7 ปีที่แล้ว +1

      If you have foliation, there is no continuity in time. Im working with a theory, called Causal Dynamical Triangulations Quantumgravity, we have there triangulated spacetime with time foliation, so there are time-likely separated spatial slices, connected by timelike links. If we consider the topology, if its a sphere, it is S^3 x T^1 (instead of S^4) if torus, then T^3 x T^1 (instead of T^4 ).
      I was thinking about knots, if there is no continuity but discretization in time, then the effective dimension considering these knots is smaller. (Or not..this is my question)

  • @anthonymacconnell7179
    @anthonymacconnell7179 7 ปีที่แล้ว

    Is there any way to like a 3 minute ad??? It was awesome

  • @Jackcabbit
    @Jackcabbit 7 ปีที่แล้ว +1

    A note about the "tangled mess" of those 4 strings between the two boards: Just rotate the boards themselves to untangle the strings. It's like a double helix.

    • @robertlozyniak3661
      @robertlozyniak3661 7 ปีที่แล้ว +1

      I have a feeling that it is against the rules to move the boards.

    • @PC_Simo
      @PC_Simo 2 ปีที่แล้ว

      My thoughts, exactly 👌🏻🎯😅👍🏻! My OCD was literally screaming precisely that, in my mind. It’s not like the boards are nailed down to the table. Right?

    • @PC_Simo
      @PC_Simo 2 ปีที่แล้ว

      @@robertlozyniak3661 Well, that would certainly explain, why they wouldn’t do that, or even consider it 🤔.

  • @veg7nlif376
    @veg7nlif376 7 ปีที่แล้ว

    Please more Dr Zsuzsanna Dancso.

  • @polaris_babylon
    @polaris_babylon 7 ปีที่แล้ว +19

    Utah Teapot cameo

  • @redhaze8080
    @redhaze8080 7 ปีที่แล้ว +3

    Zsuzsanna is such a pretty clever soul. :)

  • @black_platypus
    @black_platypus 7 ปีที่แล้ว +1

    The ant immediately reminded me of Flatland :)
    Really cool movie, recommend it :)

  • @burtonlang
    @burtonlang 7 ปีที่แล้ว +1

    lol that Wilhelm scream at 10:11

  • @xeniaanan645
    @xeniaanan645 2 ปีที่แล้ว +1

    By observing the frames and the way they move in three-dimensional space. Can we observe humans growing old in three-dimensionsal space from a perspective of a fourth dimensional person ?

  • @MrGartenzwerg95
    @MrGartenzwerg95 7 ปีที่แล้ว +123

    I take your braids to another dimension! Pay close attention!

    • @JayJay64100
      @JayJay64100 7 ปีที่แล้ว +17

      You are a prodigy for coming up with this!

    • @X_Baron
      @X_Baron 7 ปีที่แล้ว

      Everything, including braids, becomes clear once you jump out of (the 3D) space.

    • @FrankHarwald
      @FrankHarwald 7 ปีที่แล้ว

      Also: what will braids do when they're out of space? ;)

    • @scottharbin1868
      @scottharbin1868 7 ปีที่แล้ว +1

      Benetrat0r I love that song! You made it better tho...

  • @ximbabwe0228
    @ximbabwe0228 7 ปีที่แล้ว +1

    "This will make me look rather silly." I love mathematicians