EuroSciPy 2023 - Keynote: Polars

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 ม.ค. 2025

ความคิดเห็น •

  • @iutubtivi
    @iutubtivi ปีที่แล้ว +4

    I have no knowledge or time to do benchmarking but, I was using pandas' "append" to combine about 8000 CSV files (about 10 GB in total) and it was taking almost an hour and a half, i decided to try polars, according to stack overflow i could use, concat, vstack, or extend, i randomly chose "vstack", and it did the same workload in less than 1 minute, same computer, same python version, same everything, all i had to do was modify the script a little bit, for example remove "index = False" when exporting the resulting (huge) dataframe to CSV.

  • @JuliusUnscripted
    @JuliusUnscripted ปีที่แล้ว

    impressive!

  • @Molox15
    @Molox15 8 หลายเดือนก่อน

    The API is very similar to lpyspark. In fact I don't think it would be a hassle to convert existing pipelines to polars.