Volume Frustum Cone

แชร์
ฝัง
  • เผยแพร่เมื่อ 5 ก.พ. 2025
  • Deriving the volume of a frustum of a cone using calculus and the cross-section method of a volume of revolution.

ความคิดเห็น • 45

  • @ptyptypty3
    @ptyptypty3 4 ปีที่แล้ว +7

    OMG................ that was a Perfect Video on finding the volume of frustum using Calculus !!! Thank you... YOU are VERY GOOD!! :D ..

    • @RaeleneMaths
      @RaeleneMaths  4 ปีที่แล้ว

      Thank you! I’m glad you enjoyed it. It’s a repeatable process for so many calculations involving integrals.

  • @nathanwilkerson5364
    @nathanwilkerson5364 หลายเดือนก่อน

    Loved this video. My mind was blown when you made a quick visual proof for (a+b)^2=a^2+2ab+b^2, I knew how to use the theorem but I never thought about drawing the square. I also like how instead of saying "dx" you say " a lil bit of X" it really helps grasp the concept.

    • @raelenegibson8050
      @raelenegibson8050 หลายเดือนก่อน

      Thank you! I’m so glad there were nuggets that helped you. For all integrals, you can say that stuff equals the integral of a little bit of stuff, and build up from there.

  • @equilibrium8088
    @equilibrium8088 2 ปีที่แล้ว +12

    I was spending so long solving this exact problem, and I said "this is getting really messy, I must be doing something wrong"
    Turns out I was on the right track all along, and calculus is just tedious XD
    Great explanation, you made this really easy to understand, thank you

    • @RaeleneMaths
      @RaeleneMaths  2 ปีที่แล้ว +1

      Thank you! All calculus problems of accumulations start off this way: stuff equals the integral of a little bit of stuff! You may find it more enjoyable, as I do, to think of calculus (and mathematics generally) as meditative rather than tedious.

    • @shankylezapanta1464
      @shankylezapanta1464 ปีที่แล้ว +1

      @@RaeleneMaths Thank you very much hahaha. I'm spending lots of hours on my Mechanics of Materials problem specifically about the deformation caused by an applied load and self-weight on a hanging bar with different diameter. Due to my ego, I forcefully tried to solve it by intuition and stock knowledge of disk method, trigo, and algeb but I became frustrated and went on yt hahaha. Thank you again you're so good on teaching!!

  • @1098harley
    @1098harley 3 ปีที่แล้ว +2

    Thank you for this thorough and clear explanation.

  • @100T_UwU
    @100T_UwU 5 ปีที่แล้ว +1

    Your understanding of math is nearly unprecedented. Wow, great video.

    • @RaeleneMaths
      @RaeleneMaths  5 ปีที่แล้ว

      Expired Clan thank you very much! I aim to build understanding on a few versatile and powerful cornerstones. Like a capsule wardrobe but for mathematics!

  • @stucatz1130
    @stucatz1130 4 ปีที่แล้ว +1

    Great video thanks Raelene, really clear and succinct explanation of the setup.

    • @RaeleneMaths
      @RaeleneMaths  4 ปีที่แล้ว +1

      Thank you Promar. It is a totally transferable approach.

  • @XX-hf1yg
    @XX-hf1yg 2 ปีที่แล้ว +3

    thank you. You help me a lot. Clear that i can understand tho im just 12. But Im rlly into maths!! brilliant video !

    • @RaeleneMaths
      @RaeleneMaths  2 ปีที่แล้ว +1

      It’s wonderful that you love math and that you’re learning integral calculus at 12 years old! Keep learning this beautiful subject!

  • @relgn1321
    @relgn1321 7 ปีที่แล้ว +1

    you're so good at explaining it's so easy to understand. looking forward for more tutorials from you!

    • @RaeleneMaths
      @RaeleneMaths  7 ปีที่แล้ว

      Many thanks; I'm happy it is clear for you.

  • @ChatGPT-g2z
    @ChatGPT-g2z 6 หลายเดือนก่อน

    i got this for homework. didnt get this in two hours (I'm a 11th grader don't attack me). watching this video helped a lot. thanks

  • @welabird4389
    @welabird4389 3 ปีที่แล้ว

    Great method , never thought of using straight line equation , thanks alot

  • @morjes152
    @morjes152 3 ปีที่แล้ว

    Thank you so much Raelene. Best wishes

  • @BenjaminWaldner-w2n
    @BenjaminWaldner-w2n ปีที่แล้ว

    Thank you

  • @robertvarner9079
    @robertvarner9079 7 ปีที่แล้ว

    Very good derivation. I will return to your TH-cam channel for more of your tutorials.

    • @RaeleneMaths
      @RaeleneMaths  7 ปีที่แล้ว

      Thank you - there are more to come!

  • @eveakristellaurentemunda8952
    @eveakristellaurentemunda8952 3 ปีที่แล้ว

    Thank you so much, you save the day❤️

  • @wstdpotent1al576
    @wstdpotent1al576 3 ปีที่แล้ว

    Awesome video. Thank you so much

  • @andresavila786
    @andresavila786 3 ปีที่แล้ว

    just amazing

  • @pankajsaw9741
    @pankajsaw9741 7 ปีที่แล้ว +1

    Very beautiful explanation.

  • @leorickt.9604
    @leorickt.9604 3 ปีที่แล้ว

    wow thank you so much. this was great

  • @ronemchowry180
    @ronemchowry180 4 ปีที่แล้ว

    great explanation, thank you

  • @nickt6980
    @nickt6980 4 หลายเดือนก่อน

    Im over here just trying to figure out how high I should make the marking on my styrofoam cup with base radus 1" top radius 1.625" and depth 4.3" so i can get exactly 11 in^3 of liquid.
    Depressing im an engineer and can't figure this out on my own, but i just ended up finding the equation relating the midpoint radius to the volume and interatively plugged in numbers until I got a solution.
    I couldn't find a mesuring cup.

    • @RaeleneMaths
      @RaeleneMaths  4 หลายเดือนก่อน

      I imagine measuring cups in cubic inches aren’t very common, either. You would need to convert to mL or ounces.

  • @brkkk3754
    @brkkk3754 4 ปีที่แล้ว

    Thanks it really helps

  • @jian2736
    @jian2736 ปีที่แล้ว

    Hi, can I ask on how you can find the height wherein the volume of the frustum is equal? Eg, the total volume is 100 m^3, how can I know the height where I can get 50 m^3? Thank you in advance

    • @RaeleneMaths
      @RaeleneMaths  ปีที่แล้ว

      Do you know the two radii of the frustum, r and R? If not, then you cannot solve for a specific height of the frustum using the formula V = πh(r^2 + rR + R^2)/3.
      You can figure out the height of the frustum as a ratio of the original (full, large) cone's height. If the full cone's volume is 100 m^3 and the frustum's volume is 50 m^3, then the volume of the small removed cone is also 50 m^3, which is 1/2 of the full cone's volume.
      1/2 * V_full = V_small
      1/2* π/3*HR^2 = π/3*h*r^2
      1/2* HR^2 = h*r^2, and so by similarity
      H/(cuberoot2) * R/(cuberoot2) * R/(cuberoot2) = h*r*r
      so h, the height of the small removed cone is H/(cuberoot2), which means that the height of the frustum is the full cone's height minus the small cone's height:
      h_frustum = H - h = H - H/(cuberoot2) = H(1 - 1/(cubert(2))
      So h_frustum ~ 0.206*H, which is about 20% of the original full cone's height.

  • @nazihhatim9379
    @nazihhatim9379 5 ปีที่แล้ว +1

    Gr8 video

  • @kenwu9823
    @kenwu9823 6 ปีที่แล้ว

    I accidentally wrote y=R for my upper bound, because I misread the h in green as an R. In the problem I had, h and R both had a measurement of 4, so the volume worked out to be the same. However when I looked at the problem later, my bounds didn't make any sense. Glad I caught my mistake.

  • @syedmuhammadkazmi8766
    @syedmuhammadkazmi8766 4 ปีที่แล้ว

    You deserve a great ......👍👍👍

  • @ahm782
    @ahm782 6 ปีที่แล้ว

    An excellent explanation. Thanks a lot.

  • @shaneoclarit268
    @shaneoclarit268 4 ปีที่แล้ว +1

    thanks for the awesome explanation guess I'm just dumb

  • @laurengilmore1307
    @laurengilmore1307 4 ปีที่แล้ว

    Did you forget to keep the "h" in the numerator of hR/h?

    • @laurengilmore1307
      @laurengilmore1307 4 ปีที่แล้ว +1

      nvm you just corrected yourself haha

    • @RaeleneMaths
      @RaeleneMaths  4 ปีที่แล้ว

      @@laurengilmore1307 yes, just after introducing it, I forgot it! But picked it up again a minute later

  • @joaovictorfernandes9829
    @joaovictorfernandes9829 8 หลายเดือนก่อน

    Ok now I know that its better do It ALL for x axis

  • @joseaparicio5892
    @joseaparicio5892 4 ปีที่แล้ว

    I thought she would only use geometric formuls...