Volume of a Frustum

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 ม.ค. 2025

ความคิดเห็น • 43

  • @drpeyam
    @drpeyam  4 ปีที่แล้ว +19

    Insert comment about how you did it faster by doing pi h/R-r integral from r to R x^2 dx, because you can just place the cone horizontally.

  • @utkarshsharma9563
    @utkarshsharma9563 4 ปีที่แล้ว +12

    Any binomial expansion with R and r is never gonna be the same again

  • @nmmm2000
    @nmmm2000 4 ปีที่แล้ว +2

    Rrrrrrrrrrrr! :)
    I like the fact you began to do videos about simpler problems I can understand!

  • @algorithminc.8850
    @algorithminc.8850 4 ปีที่แล้ว +6

    Here ... a caramel flan disappears before it can ever be measured. I think there's a physics concept built around that.
    (method 1 is my vote, but it's always good to work a problem from multiple paths/methods)

  • @Julian-ot8cs
    @Julian-ot8cs 4 ปีที่แล้ว +7

    I liked the cone method, but it also relies on a previously found formula for the volume of a cone, so I felt that it was less of a "complete" method in a way

  • @emanuelvendramini2045
    @emanuelvendramini2045 4 ปีที่แล้ว +6

    To get a pyramid trunk volume, just apply cavalieri's principle! (and also I prefer the integration)

    • @drpeyam
      @drpeyam  4 ปีที่แล้ว +4

      Yes I think this is equivalent to cavalieri

  • @learnology8356
    @learnology8356 4 ปีที่แล้ว +1

    Thank you Dr. Peyam, it helped me at the right time.

  • @ele2735
    @ele2735 4 ปีที่แล้ว +3

    So is it a frustrum or a frustum, since I have seen both of those elsewhere too

    • @drpeyam
      @drpeyam  4 ปีที่แล้ว +3

      According to google it’s frustum apparently

    • @PhilBoswell
      @PhilBoswell 4 ปีที่แล้ว

      Wikipedia says «The term "frustum" comes from Latin frustum meaning "piece" or "crumb". The English word is often misspelled as frustrum, a different Latin word cognate to the English word "frustrate". The confusion between these two words is very old: a warning about them can be found in the Appendix Probi, and the works of Plautus include a pun on them.»
      en.wikipedia.org/wiki/Frustum#endnote_1
      The "Appendix Probi" is from the 3rd or 4th century AD.
      Plautus live about 254 - 184 BC.
      So you're in very good company 👍

  • @mokouf3
    @mokouf3 4 ปีที่แล้ว +4

    If you forgot the formula for the volume of a cone, use calculus to find it back.

  • @SquidofCubes
    @SquidofCubes 4 ปีที่แล้ว

    Have you done surface area of frustum, to get surface area element for surfaces of revolution?

  • @umerfarooq4831
    @umerfarooq4831 4 ปีที่แล้ว

    Great video ,loved the bits of humour informative and fun

  • @JSSTyger
    @JSSTyger 4 ปีที่แล้ว

    When testing the slump of concrete, we use the frustrum of a cone and fill it in 3 layers of equal volume. R = 4in, r = 2in, and H = 12". If big R is on the bottom, what are the heights of each layer?

  • @tmlen845
    @tmlen845 4 ปีที่แล้ว

    it is also possible to first calculate the area of the quadrilateral (with sides R, r, h), and then do an integral where it is extruded radially around the axis? would it make a difference that it turns faster outside than near the axis?

  • @jamesbentonticer4706
    @jamesbentonticer4706 4 ปีที่แล้ว

    Dr Peyam now in 1080p60!
    I love the integration method better :)

  • @aleksanderaksenov1363
    @aleksanderaksenov1363 4 ปีที่แล้ว +1

    Sir please make extended videos on vectors and tensors

  • @leonardmada2212
    @leonardmada2212 4 ปีที่แล้ว

    Frustum in 5D:
    2 balls in 4 dimensions are connected to form a frustum in 5 dimensions.
    What is the volume of this frustum?

  • @alexandrezeddam7817
    @alexandrezeddam7817 4 ปีที่แล้ว +3

    Mmm flan au caramel. Cheers from baguetteland aka France !

  • @jonathanjacobson7012
    @jonathanjacobson7012 4 ปีที่แล้ว +1

    So it's actually the sum of three full cones of common height h and base radii R, r & sqrt(R*r) - the geometric mean of R and r.
    Perhaps someone could reveRse engineer an even more elegant solution using this fact.

  • @thedeathofbirth0763
    @thedeathofbirth0763 ปีที่แล้ว

    You are awesome!

  • @amirmahdypayrovi9316
    @amirmahdypayrovi9316 3 ปีที่แล้ว

    very good!!!

  • @iabervon
    @iabervon 4 ปีที่แล้ว

    You could probably save a lot of writing time in the integral by doing your u-substitution for f(y) instead of expanding that in the integral.

  • @xiomarabeta9926
    @xiomarabeta9926 4 ปีที่แล้ว

    ¿Podrías activar los subtitulos es español?

  • @TheInterestingInformer
    @TheInterestingInformer 4 หลายเดือนก่อน

    You are a legend

  • @luxxulyanite
    @luxxulyanite 4 ปีที่แล้ว +3

    3.141592654Rates of the carRibean

    • @utkarshsharma9563
      @utkarshsharma9563 4 ปีที่แล้ว +1

      3.14159265358979323846264338327950288419716939937510rates you mean

    • @luxxulyanite
      @luxxulyanite 4 ปีที่แล้ว +1

      @@utkarshsharma9563 Yes :D but I'm happy I managed to remember even 9 decimal places :D

  • @imnotarobot6927
    @imnotarobot6927 4 ปีที่แล้ว

    I kinda did it the same way (as the first method), but different way of thinking. It comes out to be exactly the same (phew..)
    Triple integral (cylindrical coordinates) version:
    integrate from 0 to 2pi
    integrate from 0 to h
    integrate from 0 to R - (R-r) * (z/h)
    r * dr dz dphi
    (yes, using r for the small radius and the variable for integration is incorrect, but youtube doesn't have subscripts)
    This feels more elementary to me, but it requires the knowledge of the volume element in cylindrical coordinates. If I had to derive that from scratch, I'd be slower for sure :)
    Volume of a rotated line segment is also kinda pretty, but again: derivation of the volume of a rotation-body takes a while.

  • @thedoublehelix5661
    @thedoublehelix5661 4 ปีที่แล้ว

    Cone method seemed like the obvious way to go lol. Why do more work that you have to?

  • @dianeweiss4562
    @dianeweiss4562 4 ปีที่แล้ว

    I learned the second method when I was 13 and missed the first because I was forced to take Honor’s Calculus. I prefer the first method.

  • @billtruttschel
    @billtruttschel 4 ปีที่แล้ว

    Board says "Frustrum" not "Frustum".

    • @drpeyam
      @drpeyam  4 ปีที่แล้ว

      Both are apparently acceptable

  • @jamesfortune243
    @jamesfortune243 4 ปีที่แล้ว

    Two cones or Theorem of Pappas before seeing what you did

  • @DerrykSchieck
    @DerrykSchieck 4 ปีที่แล้ว +1

    Now do it using category theory

    • @drpeyam
      @drpeyam  4 ปีที่แล้ว +2

      Sure, just use Yoneda’s lemma on the category of cone-o-morphisms

    • @DerrykSchieck
      @DerrykSchieck 4 ปีที่แล้ว +1

      @@drpeyam sounds legit!

    • @theproofessayist8441
      @theproofessayist8441 3 ปีที่แล้ว

      @@drpeyam HAHAHAHA!

  • @eheriton
    @eheriton 4 ปีที่แล้ว

    First from Brazil !

  • @rexdalit3504
    @rexdalit3504 4 ปีที่แล้ว +1

    Cringe punning gold: you do you, babe... another glorious vid.... cool.

  • @alexjem6736
    @alexjem6736 4 ปีที่แล้ว

    Mann kann ja einfacher zur Lösung kommen!
    Volume=[((2r(pi))*(R*H*1/2)+(r*(pi)*H)]