An Interesting Functional Equation

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 ต.ค. 2024

ความคิดเห็น • 23

  • @GhostyOcean
    @GhostyOcean 4 หลายเดือนก่อน +1

    Immediately I noticed that they're both reciprocals, so f(x)=1/x

  • @debasishsarkar5000
    @debasishsarkar5000 4 หลายเดือนก่อน

    Good equation

  • @YouTube_username_not_found
    @YouTube_username_not_found 4 หลายเดือนก่อน +1

    I remember this problem from an old video of yours on your main channel. "Someone" in the comments gave an explanation for why f(x) = 1/x and f(x) = -1/x are not the only solution.

    • @YouTube_username_not_found
      @YouTube_username_not_found 4 หลายเดือนก่อน

      An example of a function that solves the equation but is neither f(x) = 1/x nor
      f(x) = -1/x *[Disclaimer: it is copy-pasted from the old video]*
      Let f(x) = -1/x if and only if x = -1, 1/2, 2, and f(x) = 1/x otherwise. This is a piecewise function that satisfies the functional equation, but is not equal to f(x) = -1/x for all x, and is not equal to f(x) = 1/x for all x.

    • @YouTube_username_not_found
      @YouTube_username_not_found 4 หลายเดือนก่อน

      Another example *[Also copy-pasted]*
      Here, another example. Let f(x) = 1/x if and only if x = e, 1/(1 - e), 1 - 1/e, π, 1/(1 - π), 1 - 1/π, and f(x) = -1/x otherwise. Again, this satisfies the equation, yet is different from all three of the solutions I have mentioned.

    • @YouTube_username_not_found
      @YouTube_username_not_found 4 หลายเดือนก่อน

      It turned out that the person I am mentioning wrote his explanation in a reply, not a comment. Check under the comment of @*******
      YT doesn't want me to mention usernames. I already have tried twice and both replies got shadowbanned.

    • @0xjoemama
      @0xjoemama 4 หลายเดือนก่อน +2

      As a matter of fact all functions that are either 1/x or 1/-x for any specific value of x different from 1 and 0(a domain restriction imposed by the initial problem but completely ignored throughout the solution ) are also solutions.

    • @0xjoemama
      @0xjoemama 4 หลายเดือนก่อน +1

      Example: f(x) = 1 / x for x rational and -1/x otherwise defined for x not equal to 0 or 1 satisfies this property.

  • @renyxadarox
    @renyxadarox 4 หลายเดือนก่อน

    Multiply (1) and (3) equations first and replace the part of product by the expression of (2) equation. You'll get the same result but faster.

  • @phill3986
    @phill3986 4 หลายเดือนก่อน +1

    😊😊😊👍👍👍

  • @mystychief
    @mystychief 4 หลายเดือนก่อน

    Suppose y=1/(1-x) then equation one becomes f(x)f(y)=1/(yx). This suggests f(x)=1/x. Apply in equation one: it fits! Solved.

    • @mystychief
      @mystychief 4 หลายเดือนก่อน

      ... and of course f(x)=-1/x

  • @MrGeorge1896
    @MrGeorge1896 4 หลายเดือนก่อน

    f(x) = ±1 / x was easy to guess but hard to proof that it is the only solution.

    • @YouTube_username_not_found
      @YouTube_username_not_found 4 หลายเดือนก่อน

      My replies to you keep getting deleted. ☹

    • @YouTube_username_not_found
      @YouTube_username_not_found 4 หลายเดือนก่อน

      Everytime I included the link to Syber's old video or the username of the person I want you to read the replies under his comment, YT decides to obliterate my reply.

    • @YouTube_username_not_found
      @YouTube_username_not_found 4 หลายเดือนก่อน

      Syber has already posted this problem in an old video on his main channel. Someone in the replies to @***** gave an explanation for why those aren't the only solutions. Go check it out!

    • @YouTube_username_not_found
      @YouTube_username_not_found 4 หลายเดือนก่อน +1

      Just check my comment to this video and the replies under it.

    • @MrGeorge1896
      @MrGeorge1896 4 หลายเดือนก่อน

      @@TH-cam_username_not_found I found the older video on the other channel. Thanks for pointing me to that place and the comments regarding piecewise definitions of f(x).

  • @cosmolbfu67
    @cosmolbfu67 4 หลายเดือนก่อน

    (1)(3)/(2)
    (f(x))^2 = 1/x^2
    f(x) = +- 1/x