Machine Learning Tutorial Python - 10 Support Vector Machine (SVM)

แชร์
ฝัง
  • เผยแพร่เมื่อ 22 ธ.ค. 2024

ความคิดเห็น •

  • @codebasics
    @codebasics  2 ปีที่แล้ว +3

    Check out our premium machine learning course with 2 Industry projects: codebasics.io/courses/machine-learning-for-data-science-beginners-to-advanced

  • @sagnikmukherjee8954
    @sagnikmukherjee8954 4 ปีที่แล้ว +21

    model = SVC(kernel = 'rbf', C = 4, gamma = 'scale')
    With the above config, I got a model score of about 99.17%. Test size was 20%, as mentioned.
    Thank you, these tutorials are amazing! :) cheers!

    • @codebasics
      @codebasics  4 ปีที่แล้ว +10

      again great job sagnik. I am seeing that you are on the roll and finishing all the exercises from this playlist. keep it up :)

    • @KULDEEPSINGH-li6gv
      @KULDEEPSINGH-li6gv 3 ปีที่แล้ว

      @@codebasics high model score leads to overfitting? as I got 98% model score with 60% training size

    • @Michelle-yk1fc
      @Michelle-yk1fc ปีที่แล้ว

      I got 99.25% model score with 70% training size

    • @happinessallover
      @happinessallover 2 หลายเดือนก่อน +2

      my model is overfitting dude, 1.0 accuracy.

  • @aditinagar6688
    @aditinagar6688 4 ปีที่แล้ว +42

    Got 1.0 score when C=4 for iris data set. Thank you Sir! Your machine learning Playlist is a boon for beginners like me.

    • @nikitakazankov4099
      @nikitakazankov4099 4 ปีที่แล้ว +5

      That's not always a good thing though. In most real life problems, that would mean that your model has become overfitted.

    • @LetsRetainLength
      @LetsRetainLength 4 ปีที่แล้ว

      Same here😱

    • @LetsRetainLength
      @LetsRetainLength 4 ปีที่แล้ว +1

      @@nikitakazankov4099 Ikrt😏

    • @jay-rathod-01
      @jay-rathod-01 3 ปีที่แล้ว

      @@nikitakazankov4099 Though it does make sense, Whenever I see a Russian name I bow down because of their intelligence.

    • @phungdao9184
      @phungdao9184 3 ปีที่แล้ว +2

      @@nikitakazankov4099 bro, The accuracy is on test dataset. if it's on training dataset then it must be overfit

  • @favourfadeyi1128
    @favourfadeyi1128 2 ปีที่แล้ว +7

    Thank you very much for these videos. They are really helpful. I did the exercise and got 99% when C=4. Any increase in C did not affect the accuracy. Also, any alteration made to gamma and kernel dropped the accuracy drastically. Thank you once again.

  • @stephenngumbikiilu3988
    @stephenngumbikiilu3988 2 ปีที่แล้ว +12

    Thank you so much for your presentation. I have learned a lot.
    Exercise
    Test size=0.2, C=1, kernel='poly
    Accuracy: 99.17%

  • @sidduhedaginal
    @sidduhedaginal 4 ปีที่แล้ว +3

    Your teaching skills are unmeasurable and it's very easy to understand no need to scratch our head for looking at some other training institute.
    I have executed load_digits datasets and found the following score:
    For 'rbf' kernal, score -98
    'linear' kernal, score -97

    • @codebasics
      @codebasics  4 ปีที่แล้ว

      Siddu, thanks for complement and good job on exercise. 👏👏👏 That is indeed a nice score

  • @DataScienceHarrison
    @DataScienceHarrison 10 หลายเดือนก่อน

    Thank you for this. They are really helpful. I did the exercise and got 99.17% when C=10. Any increase in C did not affect the accuracy. Also, any alteration made to gamma and kernel dropped the accuracy drastically. Be blessed.

  • @Abhishekpandey-dl7me
    @Abhishekpandey-dl7me 5 ปีที่แล้ว +9

    one of the best lecture I have ever watched

    • @codebasics
      @codebasics  5 ปีที่แล้ว +3

      Hey Abhishek.
      Great thanks for your kind words.Stay in touch for more videos and share our channel if you really find it worth.

  • @GlobalDee_
    @GlobalDee_ 3 ปีที่แล้ว

    This series is the best I have seen on simple and explicit Machine learning and Algorithm.Thanks

    • @codebasics
      @codebasics  3 ปีที่แล้ว

      Glad to hear that!

  • @sikanderayazkhan9996
    @sikanderayazkhan9996 5 ปีที่แล้ว +12

    Wow! how brilliantly working and good teaching method as well . thx sir from Pakistan ... keep it Up!

  • @simonmontenegro4897
    @simonmontenegro4897 ปีที่แล้ว +1

    Excellent video, I'm doing a review of what i learned a year ago in a deep learning course in the university (i'm a geophysics graduate) with this playlist without seeing too much math.
    For C = 25 kernel = rbf and gamma = scale, Test_size = 0.2
    Accuracy = 99.70%

    • @h.m.sazzadquadir1625
      @h.m.sazzadquadir1625 11 หลายเดือนก่อน

      I used kernel = linear and it gave me an accuracy score of 1.0 :3

  • @codebasics
    @codebasics  5 ปีที่แล้ว +2

    Exercise solution: github.com/codebasics/py/blob/master/ML/10_svm/Exercise/10_svm_exercise_digits.ipynb
    Complete machine learning tutorial playlist: th-cam.com/video/gmvvaobm7eQ/w-d-xo.html

    • @anujvyas9493
      @anujvyas9493 4 ปีที่แล้ว

      I used model = SVC(C=2.0, gamma='auto', kernel='rbf') and got an accuracy of 100%
      Can you check that it is right or not?
      Also I used random_state = 100 in train_test_split method for random values

  • @junjietan2668
    @junjietan2668 4 ปีที่แล้ว +4

    Hello sir, thank you for your videos. It really helps from the beginner of the video which you have listed in data science playlist. 😄
    The model in default method is 99.65% in train and 99.4% in test. Whereas gamma method will lower down the accuracy of the model from 99.4% to 75% therefore it has explicit shows the gamma method is unsuitable for the scenario however the regularisation has improve the train set to 1 and testing set is retained the best accuracy of model.
    Yet, kernel parameter as linear has also provided a good accuracy of model.
    Thank you for your guidance.

  • @dhhan68
    @dhhan68 4 ปีที่แล้ว +2

    I was looking for python code to SVM... Thanks a lot... this was a great help... very clean and intuitive lecture~!

    • @codebasics
      @codebasics  4 ปีที่แล้ว +2

      Glad it was helpful!

  • @gajanantayde
    @gajanantayde 3 ปีที่แล้ว +2

    Thanks!!!!!!!!! for this wonderful tutorial got accuracy 99.166%

  • @kousarjamadar7339
    @kousarjamadar7339 4 ปีที่แล้ว +1

    Your all concepts are so brilliant and well defined.because of these video , my concepts and doughts are now so much clear.

    • @codebasics
      @codebasics  4 ปีที่แล้ว

      Glad you like them!

  • @jg12357
    @jg12357 4 ปีที่แล้ว +3

    Thanks so much for the detailed video on SVM. This helped me a lot!

  • @GojoKamando
    @GojoKamando ปีที่แล้ว

    your lectures are so addictive I am enjoy learning, thank you soooooooooo much

  • @iradukundapacifique987
    @iradukundapacifique987 4 ปีที่แล้ว +1

    After all possible regularisations, my highest accuracy is 99%. Thank you sir

    • @codebasics
      @codebasics  4 ปีที่แล้ว +2

      Iradukunda, that's a pretty good score buddy. Good job 👍👌👏

  • @saidouiazzane2297
    @saidouiazzane2297 5 ปีที่แล้ว +8

    What a wonderfull tutorial!! well done and well explained. Thanks a lot dude for the sharing of this expensive knowledge.

  • @praveenkamble89
    @praveenkamble89 4 ปีที่แล้ว

    Tried couple of iterations finally I got 99.166% accuracy with all default parameters. random_state=1 while defining train test data.. Thanks a lot Sir

  • @stackflow4007
    @stackflow4007 8 หลายเดือนก่อน +1

    Great videos Bro, Finally understands something :)

  • @irshadmuhammed7740
    @irshadmuhammed7740 3 ปีที่แล้ว +1

    I got score 99.4 when c=1 and gamma=scale
    And i got 50 when gamma = auto
    And 99.7 when gamma = auto and c=10
    Thank you sir for this series. And following the tutorial with doing exercises

    • @codebasics
      @codebasics  3 ปีที่แล้ว

      That’s the way to go irshad, good job working on that exercise

  • @КоробкаРобота
    @КоробкаРобота 3 ปีที่แล้ว

    For digits I got highest accuracy value as 0.99 with gamma 'scale' and C=10
    Thank you for your video!

    • @codebasics
      @codebasics  3 ปีที่แล้ว

      That’s the way to go Коробка, good job working on that exercise

  • @joehansie6014
    @joehansie6014 4 ปีที่แล้ว +1

    Very very good tutorial. The gentle practice of svm. Thank you

  • @oshogarg341
    @oshogarg341 3 ปีที่แล้ว +78

    Can you make a video on title "how to determine which classification model to be used in ML according to dataset" ?

  • @mridang2064
    @mridang2064 2 ปีที่แล้ว +2

    Can't thank you enough bro.💜🙏
    Jai Shree Ram. Hope Ram bhagwaan bless your entire family.

  • @aatsw
    @aatsw 4 ปีที่แล้ว +1

    A very solid, informative yet concise tutorial. Excellent. Please keep it up.

  • @oshogarg341
    @oshogarg341 3 ปีที่แล้ว

    You are seeming to be tired from your voice but hats off your efforts !

  • @renjitlp2000
    @renjitlp2000 4 หลายเดือนก่อน

    model=SVC( C=4.0,kernel='rbf')
    with this I achieved 99.25% score please,
    fantastic teaching , thanks a lot!

  • @amitblizer4567
    @amitblizer4567 ปีที่แล้ว

    Thank you so much for this clear and helpful explanation. well done

  • @arijitRC473
    @arijitRC473 6 ปีที่แล้ว +4

    In linear kernel score is 96.9 percent and in rbf kernel score is 40 percent...
    With gamma value the score is 0.06... And with the regularization value the score is around 45. 83 percent

  • @vikhyatshanbhag305
    @vikhyatshanbhag305 4 ปีที่แล้ว +12

    When i tried iris data set with SVC default values, i got 1 accuracy. Digits data set with SVM(kernal='linear') gave 98% accuracy.

  • @rameshpokhriyalnishank7445
    @rameshpokhriyalnishank7445 2 ปีที่แล้ว +1

    my score is 76.5 with ginni index model and 75.9 with entropy model
    btw thanks for good teaching sir ji

  • @ajeniyiajayi
    @ajeniyiajayi 4 ปีที่แล้ว

    Very good tutorial. I got 99.9% accuracy using kernel='rbf' and C=1.0.

    • @codebasics
      @codebasics  4 ปีที่แล้ว

      That’s the way to go Ajeniyi, good job working on that exercise

  • @KushVarma
    @KushVarma 4 ปีที่แล้ว +1

    @codebasics in the exercise solution of digits datasets, you have created a dataframe from data & target, then added target, then removed target. Does it bring any added value? What I did was just digits = load_digits(), train_test_split(digits.data, digits.target, train_size=0.8) , and do a SVM training on X train and y train.. still giving an accuracy of 98.05 (linear) 98.33 (rbf).

    • @codebasics
      @codebasics  4 ปีที่แล้ว

      I intentionally did that just to show features and target variable side by side in a same table. Other than that you are right that it doesn't add any value.

    • @KushVarma
      @KushVarma 4 ปีที่แล้ว

      @@codebasics aah okay. thanks. i tried starting machine learning many times, but never found as simple tutorials as yours. thanks a lot for the videos.

  • @amandal8404
    @amandal8404 3 ปีที่แล้ว

    Very well-explained video. Thank you!

  • @midhunskani
    @midhunskani 4 ปีที่แล้ว

    great tutorial.You explained all the concepts crisp and clear. liked and subbed

  • @ajmalrasheed5412
    @ajmalrasheed5412 3 ปีที่แล้ว

    I calculated on digits dataset and comes with SVC = 99.16%
    while with logistic regression it was = 96.38%.
    So kudos to Support Vector Classification.

  • @tuhinkarak4927
    @tuhinkarak4927 4 ปีที่แล้ว

    All your videos are just awesome❤❤❤

    • @codebasics
      @codebasics  4 ปีที่แล้ว

      Thanks for your kind words of appreciation

  • @ashrafulalsabit4970
    @ashrafulalsabit4970 ปีที่แล้ว

    It was really really helpful, thanks a million.

  • @franky0226
    @franky0226 4 ปีที่แล้ว +11

    Great! Sir, Can you elaborate something about plotting the hyperplane (the decision function) in matplotlib
    I want to see the best line which classifies the data

  • @mujeebadil
    @mujeebadil 2 ปีที่แล้ว

    @codebasics In the exercise why target column is not generated with the code ?
    df = pd.DataFrame(digits.data,digits.target)

  • @dipankarrahuldey6249
    @dipankarrahuldey6249 4 ปีที่แล้ว

    1)What is good to have- a large gamma or regularization parameter?
    2)We used only fit() but not fit_transform(), is it because the rbf Kernel will perform the transformation itself to scale the features and the target labels?

  • @williamwambua7710
    @williamwambua7710 4 ปีที่แล้ว

    I am liking the tutorials Thanks

    • @codebasics
      @codebasics  4 ปีที่แล้ว

      Glad you like them!

  • @shipperification
    @shipperification 4 ปีที่แล้ว

    You teach so well...i thought i will never understand ml...

  • @danasharon4752
    @danasharon4752 2 ปีที่แล้ว

    Thank you for this great series!

  • @uchihaa_kakashi
    @uchihaa_kakashi ปีที่แล้ว

    SVC(kernel='rbf' , C=10)
    accuracy = 0.9933333333333333
    (digit classifier)
    thank you so much sir
    i am your fan from india
    guru dev ko sadar naman

  • @CodeWithPrince
    @CodeWithPrince 4 ปีที่แล้ว +1

    great tutorial man👍👍👍

  • @aayushsharma2881
    @aayushsharma2881 ปีที่แล้ว

    Thank You Sir, Dhaval and for the exercise I used normal rbf kernel C= 1 and got the accuracy of 0.991668

  • @mucahitugurlu7324
    @mucahitugurlu7324 4 ปีที่แล้ว +1

    Thanks for your effort sir, but there is something I wonder.. When I fit a model, I can't see any description like you have in your jupyter notebook.(C=1, cache_size=200 etc..) I can't see them.. is there any way to see them?

  • @588kumar
    @588kumar 4 ปีที่แล้ว

    Just watching the tutorial, you are not going to learn anything :-) --> We understood your intention sir. A big salute to you.

    • @codebasics
      @codebasics  4 ปีที่แล้ว

      Ha ha.. nice. It is very true.

  • @davidmercado2329
    @davidmercado2329 4 หลายเดือนก่อน

    Beautiful explanation

  • @anuragmishra6262
    @anuragmishra6262 4 ปีที่แล้ว +5

    I got 98.16% accuracy with C=2, kernel=rbf and gamma=0.001
    Maximum Accuracy: 100%
    Minimum Accuracy: 95 %
    Avg Accuracy: 98.16%

    • @codebasics
      @codebasics  4 ปีที่แล้ว

      That’s the way to go Anurag, good job working on that exercise

  • @ferrari1
    @ferrari1 3 ปีที่แล้ว +1

    Great vid! but would've been nice if you had plotted the SVM line and scatter plots. Also running a few predictions would be useful.

  • @spyzvarun5478
    @spyzvarun5478 3 ปีที่แล้ว

    used hyperparameter tuning here to get 100% for train and 99.72% for test...luckily data was clean cause im not very experienced in data cleaning and here i didnt even do too much data visualization

  • @madhavgoyal7923
    @madhavgoyal7923 6 หลายเดือนก่อน

    Why we are not using One hot encoding technique to transform categorical variables into binary variables in classification videos? I could have used logistic regression right?

  • @shubhangiagrawal336
    @shubhangiagrawal336 4 ปีที่แล้ว

    Thankyou so much for the wonderful job!!

  • @karimjiwa9279
    @karimjiwa9279 3 ปีที่แล้ว

    What an awesome tutorial.

  • @azhaanali1109
    @azhaanali1109 4 ปีที่แล้ว

    This is great! Thank you so much for the video

  • @jenil16
    @jenil16 9 หลายเดือนก่อน +2

    Logistic Regression is giving the 100% score.....its performing better than SVC and also Decision Tree.

  • @UttamKumar-zj4qs
    @UttamKumar-zj4qs 2 ปีที่แล้ว

    Hello sir, thank you so much for this video. I got 99.25% when i put C=1.
    If, I use kernel='rbf' then, I got 99 % accuracy.
    And for kernel='linear', I got 97.7% accuracy.

  • @sushantmore6492
    @sushantmore6492 ปีที่แล้ว

    Usually we predict the values based on x_test value and we get some predictions for x_test values. And after that we compare the y_pred with the y_test, but in the video the predict code is not written or is it like that only ??

  • @PythonisLove
    @PythonisLove 3 ปีที่แล้ว

    Nobody...Nobody....
    does it better 😄😄😄😄
    (yes you explained the best)

  • @oshogarg341
    @oshogarg341 3 ปีที่แล้ว

    Thank you so much Sir! for your machine learning playlist

    • @codebasics
      @codebasics  3 ปีที่แล้ว

      I am happy this was helpful to you.

  • @fathoniam8997
    @fathoniam8997 5 หลายเดือนก่อน

    OK, the excercise is cool. i got the best accuracy score using kernel = RBF.

  • @nomanshaikhali3355
    @nomanshaikhali3355 4 ปีที่แล้ว

    As in this, you have given the last example for practice that same example we have solved in the Logistic regression model!! then what will be the difference b/w them?? I am talking about (Load Digits problem)

  • @Titanflame007
    @Titanflame007 6 หลายเดือนก่อน

    How will we get to know whether to use Logistic regression or Support vector machine?

  • @Statistician24
    @Statistician24 10 หลายเดือนก่อน

    Thank you sir for wonderful explanation.I think high regularization means simpler the model.(5.11)

  • @austinsehgal8683
    @austinsehgal8683 2 ปีที่แล้ว

    For coding on 6:32, is there a way to do SVM with file reading on an CSV

  • @wast9050
    @wast9050 ปีที่แล้ว

    Do you know a way you could look at only one data points specifically when you do the prediction at the end?

  • @ms.mousoomibora9526
    @ms.mousoomibora9526 5 ปีที่แล้ว

    very much helpful for beigineers !! Thank you so much..

  • @awesome_harish
    @awesome_harish 4 ปีที่แล้ว

    BEST DEMO ON SVM

  • @roopagaur8834
    @roopagaur8834 5 ปีที่แล้ว

    Excellent...!!!! 😀 thanks

    • @codebasics
      @codebasics  5 ปีที่แล้ว +1

      Roopa, thanks for the feedback

  • @amirhosseindaneshpour8714
    @amirhosseindaneshpour8714 4 ปีที่แล้ว

    got a score of 99.16 for my test samples with C=any thing more than 2( i wonder why there were no difference between C=2 and C= 100, i got the 99.16 accuracy for all the values for C more than 2!). didn't change the gamma or the score would be destroyed! the kernel ='rbf'.
    thanks for this amazing tutorial BTW! :)

    • @codebasics
      @codebasics  4 ปีที่แล้ว +1

      Good job Amir, that’s a pretty good score. Thanks for working on exercise

  • @prathameshmore5262
    @prathameshmore5262 2 ปีที่แล้ว +1

    why we can't write like this :- iris.target_names = df['target_names'] to add target_names in the dataframe?

    • @codebasics
      @codebasics  2 ปีที่แล้ว

      You can write it that way

  • @slainiae
    @slainiae 10 หลายเดือนก่อน

    Lesson to be learning: Default settings work best.
    Kernal = default (rbf): 0.99166666
    Kernal = linear: 0.97777777
    Kernal = poly: 0.9916666
    Kernal = sigmoid: 0.9277777
    Kernal = default, gamma = scale (default): 0.98888888
    Kernal = default, gamma = auto: 0.65
    Kernal = default, gamma = 100: 0.077777
    Kernal = default, gamma = scale (default), C = 1(default): 0.98888888
    Kernal = default, gamma = scale (default), C = 10: 0.99166666
    Kernal = default, gamma = scale (default), C = 100: 0.99166666
    Kernal = default, gamma = scale (default), C = 0.1: 0.95

  • @karishmasewraj6437
    @karishmasewraj6437 2 ปีที่แล้ว +1

    SVC(C=4, kernel='rbf',gamma='scale')
    Got an accuracy of 99.17%

  • @yahiagamal2876
    @yahiagamal2876 2 ปีที่แล้ว

    hi,
    you dropped for the df the target and flower name, right? why u didn't just use iris.data instead?

  • @prashantkumarsharma1
    @prashantkumarsharma1 6 ปีที่แล้ว +1

    thanks a lot for uploading. Plz try to upload next vides soon.

  • @musthakhahammed6535
    @musthakhahammed6535 2 ปีที่แล้ว

    And thank you sir for an awesome playlist

  • @deepakavva317
    @deepakavva317 3 ปีที่แล้ว

    why we shouldn't use decision tree for this iris data set since it can also classify the points well as you shown in scatter plot. pls clarify my doubt?

    • @codebasics
      @codebasics  3 ปีที่แล้ว

      well you can use decision tree as well. It was just that this tutorial was for SVM hence I used svm here. I didnt say svm is the best method to solve iris classification problem

  • @BenjaminFunklin
    @BenjaminFunklin 6 ปีที่แล้ว +5

    hello great videos, loved this series. Can you please do a video on imbalanced data sets in classifications problems? Maybe just add onto a previous example you have but with a case where there are very few "1" or "true" values compared to "0" or "false" . thanks for you consideration!

  • @Alexweno07
    @Alexweno07 2 ปีที่แล้ว

    Hi! Does test_train_split shuffles the matrix X?

  • @joehansie6014
    @joehansie6014 4 ปีที่แล้ว

    What if we do sliding window to get dimensionality reduction (reduce the length of data), then how to classify the data if the length of data and target is different?

  • @saurabh7943
    @saurabh7943 ปีที่แล้ว +1

    We have done with the iris data in Logistic Regression Exercise , which peak value was also 96 %

    • @kishanagarwal7986
      @kishanagarwal7986 11 หลายเดือนก่อน +1

      I got a peak value of 1 in LR

  • @sdhilip
    @sdhilip 5 ปีที่แล้ว +1

    How to find linear or non-linear in the dataset if we get very large dataset ?

  • @Yash8147
    @Yash8147 2 ปีที่แล้ว +2

    Exercise Results:
    C=5, kernel ='rbf' & test size used 0.2, Accuracy: 99.5%

  • @mandarkulkarni823
    @mandarkulkarni823 4 ปีที่แล้ว

    what parameters to pass in predicting model...model.predict() =..for the iris data set shown in this video

  • @ANAMIKASHARMA-c3q
    @ANAMIKASHARMA-c3q 4 หลายเดือนก่อน

    Thank you sir for this tutorial. Sir in the In[21] it is showing the error like cannot import the name 'trapezoid' from 'sklearn.utils.fixes'. Maybe it is due to the new version. What should I do?

  • @vaibhavsharma399
    @vaibhavsharma399 4 ปีที่แล้ว

    why we have not applied feature scaling here?

  • @MohammadAli-pk5tu
    @MohammadAli-pk5tu 3 ปีที่แล้ว

    **HELP**
    In my jupyter notebook,
    i don't get the information of modules like svc(*, c=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=true, probability=false, tol=0.001, cache_size=200, class_weight=none, verbose=false, max_iter=- 1, decision_function_shape='ovr', break_ties=false, random_state=none) whenever I execute the model with X and y train datasets.
    What I get is SVC(), everything blank inside.
    so what should I do to get all the information????

  • @benb6946
    @benb6946 3 ปีที่แล้ว

    When I did the exercise, rbf performs slightly better for me than linear. I believe when you created your notebook, the default gamma was auto. Using the scale option provides much better results than auto for rbf.

  • @nastaran1010
    @nastaran1010 ปีที่แล้ว

    Hi. I have a aquestion, when we execute the model iteratively, the score of model is chenging. So, How can we say , what is out accuracy of model, for example. in papers as a result?,
    please give me some clues, 🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏

  • @ansh6848
    @ansh6848 3 ปีที่แล้ว +1

    This is our 3rd Classification Algorithm...but how we choose which to use and when?

  • @minhaoling3056
    @minhaoling3056 3 ปีที่แล้ว

    I think it should be high C corresponds to low regularization, which means the classifier don't penalize too much on classification error.
    Vice versa for low C.

  • @jaihind5092
    @jaihind5092 4 ปีที่แล้ว

    Sir when you didn't used the X_train and y_train parameters for checking score?

  • @turtlepedia5149
    @turtlepedia5149 4 ปีที่แล้ว

    Sir cannot we do this without the library means mathematicaly using cost function and gradient

  • @chandrashekhargourshete5723
    @chandrashekhargourshete5723 2 ปีที่แล้ว

    I am not getting any change in model score even after change either kernel or regularization

  • @minhaj6211
    @minhaj6211 4 ปีที่แล้ว

    Please make a video on the topic "How to choose which ML algorithm for a dataset".
    And thanks for amazing videos, sir.