An incredibly difficult viral math problem!

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 พ.ย. 2024

ความคิดเห็น • 808

  • @jasmeetsingh9668
    @jasmeetsingh9668 4 ปีที่แล้ว +481

    One of the best question till now

  • @Beebo
    @Beebo 4 ปีที่แล้ว +175

    I think the key piece of insight is using EF/2 instead of just EF. I constructed all the same guide lines as the solution but I just didn't click.

    • @bioloqgnc4953
      @bioloqgnc4953 4 ปีที่แล้ว

      Woo

    • @bioloqgnc4953
      @bioloqgnc4953 4 ปีที่แล้ว

      Btw i liked your channel, that's why i consider myself that catgirl, cats are my life😍👌🐱

    • @thomvandenhil4717
      @thomvandenhil4717 4 ปีที่แล้ว +4

      Exactly, because only then you can use the fact that AB=8 to eventually get x+y

    • @bioloqgnc4953
      @bioloqgnc4953 4 ปีที่แล้ว +1

      @@thomvandenhil4717 yupp

    • @joshuamurray9112
      @joshuamurray9112 4 ปีที่แล้ว

      Same

  • @roderickwhitehead
    @roderickwhitehead 4 ปีที่แล้ว +293

    Even when a right triangle is clearly a 3-4-5 Pythagorean Triple... Gotta name drop Gougu.

    • @nomsomething
      @nomsomething 4 ปีที่แล้ว +12

      Oh No, A gOuGu TrIpLe. AaAaAaAaAaAa.........

    • @cauchysintegral3713
      @cauchysintegral3713 4 ปีที่แล้ว +30

      Yeah and it's an Egyptian 3-4-5 triangle, apparently famous to boot. I used to be sure he got on some weird social commentary kick, but now I'm thinking he may just be a pedantic schmuck trying to show off how much history he's read. Either way, annoying as it just stands out like a sore thumb when compared to the quality problems and explanations he presents (this problem is one of the best I've seen recently -- really cute problem).

    • @nomsomething
      @nomsomething 4 ปีที่แล้ว

      @@cauchysintegral3713 EEEEEEEE

    • @zanti4132
      @zanti4132 4 ปีที่แล้ว +18

      You guys beat me to it. At 4:22, he refers to the Gougu Theorem and the "Egyptian" 3-4-5 Triangle in the same sentence. Now, if the Chinese proved the theorem first, I'm pretty sure they would have found the 3-4-5 and all those other "Gouguian" Triples, so let's at least be consistent on which nationality gets the credit.

    • @nomsomething
      @nomsomething 4 ปีที่แล้ว

      @@zanti4132 Oof lol
      There's probably this thing before communication at such long distances tho ahahahaha
      they both find find it at questionable times but its more likely that the Greeks(?... I think idk) discovered it first

  • @danielduranloosli
    @danielduranloosli 4 ปีที่แล้ว +12

    Both this problem and the way you phrased and graphed the solution were absolutely beautiful. Thank you!
    (solved it by myself, not that it matters)

  • @johnrokosky
    @johnrokosky 4 ปีที่แล้ว +108

    As soon as he said it was allways equal to nine, I paused the video, went for a long walk in the woods and smoked a pack of cigars whilst alone.

    • @thejookking
      @thejookking 3 ปีที่แล้ว +10

      I'm NOT going to even pretend to pretend that I understood this.

    • @fake_account-xg1pr
      @fake_account-xg1pr 3 ปีที่แล้ว

      It *is* tho

    • @mike1024.
      @mike1024. 2 ปีที่แล้ว +1

      There's an injury lawyer in SC named George Sink. All 9's? Sounds like a George Sink commercial.

    • @devanshsrivastav3573
      @devanshsrivastav3573 ปีที่แล้ว

      clearly someone does not understand basic maths(it's me)

  • @russellsmithies
    @russellsmithies 3 ปีที่แล้ว +21

    I drew it in Fusion360 and added a couple of dimensions for the AB and EF lines, then added tangency constraints for the circles and a vertical constraint on the EF line and it all snapped into place giving the BC length of 9 :-)

  • @tanishqkumar1640
    @tanishqkumar1640 4 ปีที่แล้ว +450

    Am I the only one who at first thought it is a square 😅

    • @canttankofficial4986
      @canttankofficial4986 4 ปีที่แล้ว +6

      Same here 😂

    • @daffa_fm4583
      @daffa_fm4583 4 ปีที่แล้ว +2

      same

    • @xwtek3505
      @xwtek3505 4 ปีที่แล้ว

      Me too. And not only that, I thought the 8 is only the distance between A and the intersection between AB and a circle

    • @maxie4937
      @maxie4937 4 ปีที่แล้ว

      Me too. I didn't notice the 8. My answer was BC = 3 + 6/√2

    • @HollywoodF1
      @HollywoodF1 4 ปีที่แล้ว +2

      He said “rectangle” twice in the first few seconds. Perhaps you were still stirring up your glass of Ovalitine at that point instead of paying attention.

  • @김지수-r5k
    @김지수-r5k 4 ปีที่แล้ว +20

    That 3 4 5 is so beautiful although i see it almost in every puzzle the person who made this must have intended that

  • @emanueletrevisani4004
    @emanueletrevisani4004 2 ปีที่แล้ว +3

    Il problema, la grafica, la spiegazione, sono stupendi.
    Grazie! ❤️

  • @minimoogle3335
    @minimoogle3335 4 ปีที่แล้ว +66

    haven't started the video yet.. and I'm already hearing the gougu theorem..

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว

      Math
      Geometry problem
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

    • @bioloqgnc4953
      @bioloqgnc4953 4 ปีที่แล้ว

      Lol why am i not?😅😆

  • @rumadas1048
    @rumadas1048 4 ปีที่แล้ว +15

    Really too awesome.... And mind-blowing also...and the presentation is really praiseworthy

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว

      Math
      Geometry problem
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

    • @bioloqgnc4953
      @bioloqgnc4953 4 ปีที่แล้ว

      Yess i like it rlly👌😍

  • @Jake_the_Brick
    @Jake_the_Brick 4 ปีที่แล้ว +10

    My Solution: Assume ABCD is a square and say that BC is 8.
    Actual Solution: Well you were pretty close.

  • @merchillio
    @merchillio 2 ปีที่แล้ว +2

    My dad is an highschool math teacher and I love to send him your videos. He likes to try and solve them before watching the entire video

  • @anandk9220
    @anandk9220 3 ปีที่แล้ว +1

    I'd already watched the solution some 5 odd months back but didn't remember it now. On relooking the problem, I solved it little differently but interesting way which I'd love to share here.
    Consider 'x' to be the tangent length of smaller circle at upper left.
    Then Radius of same smaller circle at upper left
    = x
    Chord length (in two circles) = 6, so half chord length = Vertical distance between centre of two circles = 3
    Then,
    AB = Tangent length + 3 + Radius of larger circle at lower right
    Radius of larger circle at lower right = 5 - x
    Then,
    Distance of line joining centre of two circles
    = x + 5 - x = 5
    Vertical distance between centre of two circles = 3
    So by Pythagoras Theorem,
    Horizontal distance between centre of two circles = 4
    So,
    BC = Tangent length of smaller circle + Horizontal distance between centre of two circles + Radius of larger circle
    BC = x + 4 + (5 - x)
    = 9 units

  • @BomBom-oh4yb
    @BomBom-oh4yb 3 ปีที่แล้ว +1

    oh beautiful puzzle!

  • @frankie391
    @frankie391 4 ปีที่แล้ว +9

    4:22 famous theorem!!!
    The problem is attractive, the solution is clever, but the theorem is.... no no no no

  • @cpsof
    @cpsof 4 ปีที่แล้ว +24

    Presh: Let's use an ancient trick!
    Pythagoras: Finally...
    Presh: GOUGU!!!

    • @brahmandsaraswat867
      @brahmandsaraswat867 4 ปีที่แล้ว

      😂😂😂😂.

    • @ybodoN
      @ybodoN 4 ปีที่แล้ว +7

      Presh : Famous Egyptian 3-4-5 right triangle...
      Pythagoras : Famous as Pythagorean triples !

  • @joydipmitra2338
    @joydipmitra2338 2 ปีที่แล้ว

    The problem, as well as the solution, are both too good. Its a pleasure seeing both. Congratulations to Mr. Talwalkar.

  • @vishalsawarn4234
    @vishalsawarn4234 4 ปีที่แล้ว +16

    Now our mind think that we could have solved it
    But before watching the solution, it was like 😵🤯

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว +1

      Math
      Geometry problem....
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

  • @FootLettuce
    @FootLettuce 4 ปีที่แล้ว +8

    Presh is kinda obsessed with Gougu right now.

    • @piman9280
      @piman9280 4 ปีที่แล้ว +4

      With any luck, maybe the CCP will find a cure!

  • @ybodoN
    @ybodoN 4 ปีที่แล้ว +1

    Written between 2000 and 1786 BC, the Middle Kingdom Egyptian Berlin Papyrus 6619 includes a problem whose solution is the Pythagorean triple 6:8:10, but the problem does not mention a triangle. The Mesopotamian tablet Plimpton 322, written between 1790 and 1750 BC during the reign of Hammurabi the Great, contains many entries closely related to Pythagorean triples. (Source : Wikipedia)

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว

      Math
      Geometry problem..
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

  • @fanteasy7399
    @fanteasy7399 4 ปีที่แล้ว +12

    Gougu theorem: you are weak
    Pythagoras theorem: i'm you

  • @Chadicle7
    @Chadicle7 4 ปีที่แล้ว +12

    Great job using the Pythagorean Theorem to solve the problem!

    • @Zembie1
      @Zembie1 2 ปีที่แล้ว +1

      What the heck is Pythagorean Therom

    • @srprantor
      @srprantor 10 หลายเดือนก่อน

      ​@@Zembie1lol😂

  • @sambhavmahajan8285
    @sambhavmahajan8285 4 ปีที่แล้ว +4

    THIS IS THE BEST AND CLEVEREST QUESTION OF THIS CHANNEL TILL DATE ACCORDING TO ME

  • @GeorgeSalrs
    @GeorgeSalrs 4 ปีที่แล้ว +43

    0:19 : I paused. I expect GoUgU theorem.

    • @ayazuit
      @ayazuit 4 ปีที่แล้ว +2

      Gougu was there, in the 3-4-5 side triangle, length 4 was determined by famous Gougu theorem. 😄😂

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว

      Math
      Geometry problem
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

    • @bioloqgnc4953
      @bioloqgnc4953 4 ปีที่แล้ว

      @@ayazuit gougu is which thoerem that idk😕i know only its one of name is Piphagor😄

  • @alhdlakhfdqw
    @alhdlakhfdqw 3 ปีที่แล้ว +3

    Perfect explanation and visualization! :) thank you very much for your great vids

  • @MaxMathGames
    @MaxMathGames 4 ปีที่แล้ว +37

    All hail Presh's PowerPoint skills .
    Also, it is an interesting question on geometry 👍👍👍👌👌👌

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว

      Math
      Geometry problem
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

  • @felipereigosa96
    @felipereigosa96 3 ปีที่แล้ว +2

    I did it in a simpler way. Since he didn't specify the radii of the two circles, I assumed that EF would always be 6 no matter the radii. So I just set the radius of the first one to 0. That means the second circle passes through point B and a point P between A and B where BP is 6 (it's coincident with EF) and AP is 2. From there you get the diameter of the circle to be 10 from symmetry. So the radius (5) plus the distance of the center to the chord BP (4) is equal to BC.

    • @mike1024.
      @mike1024. 2 ปีที่แล้ว

      Nice idea! You are assuming that EF is independent of the radii of the two circles in order for this result to work, whereas he proved that it was independent while calculating the value.

    • @tomdekler9280
      @tomdekler9280 ปีที่แล้ว +1

      I think you mean BP is 6 and the diameter of the circle is 10. Otherwise, very nice answer.

    • @felipereigosa96
      @felipereigosa96 ปีที่แล้ว

      @@tomdekler9280 I did indeed, thanks for catching that.

  • @gskim8342
    @gskim8342 4 ปีที่แล้ว +6

    I really love this channel

  • @earthbind83
    @earthbind83 3 ปีที่แล้ว +2

    I wish my math class had had fun problems like this one occasionally.

  • @helo3827
    @helo3827 4 ปีที่แล้ว +5

    you are my favorite youtuber, never miss your videos

  • @CYT726
    @CYT726 3 ปีที่แล้ว +2

    The only question that I’m able to solve, made my day.

  • @sadaa_aabhaari
    @sadaa_aabhaari 4 ปีที่แล้ว +1

    You are jussttt
    A M A Z I N G
    This problem was very unique
    Love your videos

  • @marcochimio
    @marcochimio 4 ปีที่แล้ว

    Brilliant question. Brilliant designer.

  • @mathsandsciencepractical7942
    @mathsandsciencepractical7942 2 ปีที่แล้ว +1

    You are my inspiration

  • @janda1258
    @janda1258 4 ปีที่แล้ว +6

    It’s not a Phresh video unless the Gogou theorem is mentioned

    • @piman9280
      @piman9280 4 ปีที่แล้ว +1

      Yeah, a pain in the butt!

  • @cheekclappa9833
    @cheekclappa9833 4 ปีที่แล้ว +1

    This has such a beautiful solution. You are actually the best Maths teacher on youtube🤩🤩🤩

  • @doveShampoo1111
    @doveShampoo1111 4 ปีที่แล้ว +18

    This dude is on a whole other level

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว

      Math
      Geometry problem
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

    • @bioloqgnc4953
      @bioloqgnc4953 4 ปีที่แล้ว

      @@innocentzero9814 lol😶

  • @johns22
    @johns22 4 ปีที่แล้ว +1

    I did also observed the sizes of the two circles is irrelevant. Therefore, I solved the puzzle assuming both circles have the same size (radius of 2.5). Symmetry will ease the solution when both circles have the same size. By the way, EF will have a maximum size of 6.627416998
    . That is, there will be no solution of EF happened to be 6.7 instead of 6.

    • @tomdekler9280
      @tomdekler9280 ปีที่แล้ว

      Wouldn't the maximum height of EF given any value of BC be 8?
      That's when both circles are underneath eachother, tangent to the opposite sides, with a radius of 2 and a length BC of 4, with EF cleanly dividing the rectangle lengthwise.

  • @feelingzhakkaas
    @feelingzhakkaas 3 ปีที่แล้ว +1

    excellent.... however please note that ancient India has very rich mathematical treasure more ancient than Pyramid era... in this treasure 3,4,5 units of right triangle is mentioned very often.

  • @girdhansingh1814
    @girdhansingh1814 2 ปีที่แล้ว

    Awesome work presh talwalkar 🔥

  • @jumpman8282
    @jumpman8282 2 ปีที่แล้ว

    Let 𝑟 be the radius of the upper circle and 𝑅 the radius of the bottom circle.
    Using the bottom circle as a scaled up unit circle, the point where the two circles touch will have the coordinates (𝑅 cos 𝜃, 𝑅 sin 𝜃).
    This means that the combined length of the vertical chords is 2𝑅 |sin 𝜃| + 2𝑟 |sin 𝜃| = 6, which gives us 𝑅 + 𝑟 = 3 ∕ |sin 𝜃|.
    Similarly, the height of the rectangle is 𝑟 + 𝑟 |sin 𝜃| + 𝑅 + 𝑅 |sin 𝜃| = 8 ⇒ 𝑅 + 𝑟 = 8 ∕ (1 + |sin 𝜃|)
    Thus, 3 ∕ |sin 𝜃| = 8 ∕ (1 + |sin 𝜃|) ⇒ |sin 𝜃| = 3 ∕ 5
    Also, |cos 𝜃| = √(1 − |sin 𝜃|²) = 4 ∕ 5
    Finally, the width of the rectangle is
    𝐴𝐵 = 𝑟 + 𝑟 |cos 𝜃| + 𝑅 + 𝑅 |cos 𝜃|
    = (𝑟 + 𝑅)(1 + |cos 𝜃|)
    = (𝑟 + 𝑅)(1 + 4 ∕ 5)
    = 9 ∕ 5(𝑅 + 𝑟)
    = 9 ∕ 5(3 ∕ |sin 𝜃|)
    = 9 ∕ 5(3 ∕ (3 ∕ 5))
    = 9

  • @miniwizard
    @miniwizard 4 ปีที่แล้ว

    That is a truly elegant solve.

  • @PuzzleAdda
    @PuzzleAdda 4 ปีที่แล้ว

    Incredible Maths Puzzle. Really Impressed!

  • @James_Moton
    @James_Moton 4 ปีที่แล้ว +3

    How about this: Express the side length BC in terms of side length AB for any valid side length for AB.

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว

      Math
      Geometry problem
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

  • @davidchung1697
    @davidchung1697 4 ปีที่แล้ว +1

    Solved it thinking about the problem in terms of trigonometry. (r + R)(sin B) = 6 (using the chord) and (r+R)(sin B) = 8 (using the side of the rectangle). From those two, we know that sin B = 3/5 and r + R = 5. The other side of the rectangle is (r + R) (1 + cos B) = 5(1 + 4/5) = 9.
    Pretty much the same thing as the video solution, but thinking about the problem in trigonometry.

  • @ignacioangelo9849
    @ignacioangelo9849 4 ปีที่แล้ว

    The solution is aesthetically pleasing.

  • @smchoi9948
    @smchoi9948 2 ปีที่แล้ว

    Align the whole diagram w/ the Cartesian plane, so that
    (1) the only point at where the 2 circles meet is the origin O(0,0);
    (2) the centre of C₁ & that of C₂ are at P₁(-r,0) & P₂(R,0), respectively, where C₁ is the circle touching AB & BC w/ radius r, & C₂ is the circle touching AD & DC w/ radius R.
    The eqn. of C₁ is
    (x+r)² + y² = r² x² + y² = -2rx ...(i).
    The eqn. of C₂ is
    (x-R)² + y² = R² x² + y² = 2Rx ...(ii).
    The eqn. of L, the line containing EF, is
    y = kx ...(iii) for some k E is at ( -2r/(k²+1), -2kr/(k²+1) );
    (ii) & (iii) => F is at ( 2R/(k²+1), 2kR/(k²+1) ).
    |EF| = 6
    => [2R/(k²+1) + 2r/(k²+1)]² + [2kR/(k²+1) + 2kr/(k²+1)]² = 6²
    => 4(R+r)² + 4k²(R+r)² = 36(k²+1)²
    => (R+r)² = 9(k²+1) ...(iv')
    => R+r = 3√(k²+1) ...(iv) (as R+r > 0)
    The eqn. of L₁₁, the line containing BC (⊥EF), is
    y = (-1/k)x + c₁₁' x + ky + c₁₁ = 0
    for some c₁₁' & c₁₁ (c₁₁ = -kc₁₁');
    so dist(P₁,L₁₁) = r
    => | [(-r)+k(0)+c₁₁] / √(k²+1) | = r
    => c₁₁ = r√(k²+1) + r ...(v)
    ("+ve √ branch" is taken: between the 2 tangents to C₁ w/ slope -1/k, L₁₁ has the larger y-int. (i.e. c₁₁'), so c₁₁ takes the larger value as -k>0).
    The eqn. of L₁₂, the line containing AD (⊥EF), is:
    y = (-1/k)x + c₁₂' x + ky + c₁₂ = 0
    for some c₁₂' & c₁₂ (c₁₂ = -kc₁₂');
    so dist(P₂,L₁₂) = R
    => | [(R)+k(0)+c₁₂] / √(k²+1) | = R
    => c₁₂ = -R√(k²+1) - R ...(vi)
    ("-ve √ branch" is taken: between the 2 tangents to C₂ w/ slope -1/k, L₁₂ has the smaller y-int. (i.e. c₁₂'), so c₁₂ takes the smaller value as -k>0).
    dist(L₁₁,L₁₂) = |BA| = 8
    => dist(L₁₁,O) + dist(O,L₁₂) = 8
    => |c₁₁/√(k²+1)| + |c₁₂/√(k²+1)| = 8
    => |c₁₁| + |c₁₂| = 8√(k²+1)
    => [r√(k²+1) + r] + [R√(k²+1) + R] = 8√(k²+1) (by (v) & (vi))
    => (R+r) = [8-(R+r)] √(k²+1)
    => (R+r) = [8-(R+r)] [(R+r)/3] (by (iv))
    => R+r = 5 ...(*) (N.B. R+r > 0)
    The eqn. of L₂₁, the line containing BA (//EF), is:
    y = kx + c₂₁ kx - y + c₂₁ = 0 for some c₂₁;
    so dist(P₁,L₂₁) = r
    => | [k(-r)-(0)+c₂₁] / √(k²+1) | = r
    => c₂₁ = -r√(k²+1) + kr ...(vii)
    ("-ve √ branch" is taken: between the 2 tangents to C₁ w/ slope k, L₂₁ has the smaller y-int., i.e. c₂₁).
    The eqn. of L₂₂, the line containing CD (//EF), is:
    y = kx + c₂₂ kx - y + c₂₂ = 0 for some c₂₂;
    so dist(P₂,L₂₂) = R
    => | [k(R)-(0)+c₂₂] / √(k²+1) | = R
    => c₂₂ = R√(k²+1) - kR ...(viii)
    ("+ve √ branch" is taken: between the 2 tangents to C₂ w/ slope k, L₂₂ has the larger y-int., i.e. c₂₂).
    |BC| = dist(L₂₁,L₂₂)
    = dist(L₂₁,O) + dist(O,L₂₂)
    = |c₂₁/√(k²+1)| + |c₂₂/√(k²+1)|
    = (|c₂₁| + |c₂₂|) / √(k²+1)
    = {[r√(k²+1) - kr] + [R√(k²+1) - kR]} / √(k²+1) (by (vii) & (viii); N.B. k

  • @ryanxu1718
    @ryanxu1718 3 ปีที่แล้ว

    Also the formula will be: the square root of b^2+ab plus b-a/2 (b is the length of AB while a is the length of EF)

  • @ZanyYooper
    @ZanyYooper 3 ปีที่แล้ว +1

    It is so awesome i figured this out just using simple trig i learned 30 years ago, and didnt even remember all of these other theorems... just the trig.... AWESOME! (Totally tooting my horn, I know, but was still fun)

  • @lautoka63
    @lautoka63 4 ปีที่แล้ว +1

    I haven't done much maths since Engineering school 40 years ago; should I be worried that I'm enjoying this channel so much?

    • @vashon100
      @vashon100 3 ปีที่แล้ว

      Back then it was called math.

    • @lautoka63
      @lautoka63 3 ปีที่แล้ว

      @@vashon100 In North America, yes; not elsewhere. We saved up and bought the letter s to add to the end. Besides, is there something called "Mathematic"?

  • @pfft3158
    @pfft3158 4 ปีที่แล้ว +10

    I bet this uses the Gougu Theorem.

    • @dallavalla
      @dallavalla 4 ปีที่แล้ว +6

      cash in that bet 4:21

    • @talhakagantosun6341
      @talhakagantosun6341 4 ปีที่แล้ว +1

      Why not"physagor theorem"

    • @hishamsameh3496
      @hishamsameh3496 4 ปีที่แล้ว +1

      @@talhakagantosun6341 pythagoras.

    • @talhakagantosun6341
      @talhakagantosun6341 4 ปีที่แล้ว +1

      @@hishamsameh3496 i m from Turkish i not know very well English but learn this (:

    • @hishamsameh3496
      @hishamsameh3496 4 ปีที่แล้ว +1

      @@talhakagantosun6341 it's okay. I thought that u didn't know, so may be I could contribute to your knowledge, that's all.

  • @istiakahamedarman5990
    @istiakahamedarman5990 3 ปีที่แล้ว

    The quandary swam
    before my eyes.

  • @deerh2o
    @deerh2o 4 ปีที่แล้ว +1

    The 3-4-5 triangle is only because the given lengths are 6 and 8. When you start with different lengths or generalize, you don't always get a 3-4-5 triangle; but you always do get a right triangle.

    • @Thirdbase9
      @Thirdbase9 ปีที่แล้ว

      And BC will be constant, assuming your AB and EF are possible pairs.

  • @bollyfan1330
    @bollyfan1330 3 ปีที่แล้ว

    There is a much easier way to solve this by using a specific example rather than generic use case. Since the relation should hold up for any two circles with those properties, assume those circles to have the same radius (r).
    Now it is clear that the vertical distance between the centers of the circles is = 8 - 2r = half of the length EF (by symmetry) = 6 / 2 = 3
    This gives r = 2.5
    Now consider the (horizontal-vertical) right triangle with the hypotenuse between the two centers.
    The hypotenuse is clearly = 2r = 5
    Vertical distance computed before was 8 - 2r = 3
    By Pythagoras, the horizontal distance between the two centers (lets call it x) = 4
    The side BC = r + x + r = 2.5 + 4 + 2.5 = 9

  • @callmedilah
    @callmedilah 3 ปีที่แล้ว +1

    It's so entertaining and your voice is somehow lovely to hear ;(

  • @xarran
    @xarran 3 ปีที่แล้ว

    Nice, I was able to solve this with a slightly different equation:
    2xsin(Θ)+2ysin(Θ)=6
    x+xsin(Θ)+y+ysin(Θ)=8
    x+xcos(Θ)+y+ycos(Θ)=?
    Divide first equation by 2 to get:
    xsin(Θ)+ysin(Θ)=3
    If you subtract the above from the 2nd equation you will see terms cancel out:
    x+y+=5
    Then factor out sin(Θ):
    (x+y) sin(Θ)=3
    Plugging the known sum gives us:
    5 sin(Θ)=3, thus:
    sin(Θ)=3/5
    Knowing that sin is opposite/hypotenuse ratio, we can plug 5 for hypotenuse and 3 for a side of a triangle.
    This triangle starts to look familiar, in fact it is a Pythagorean triangle, so the other side is 4, which gives us:
    cos(Θ)=4/5
    Now we can solve the third equation by plugging the known terms:
    x+xcos(Θ)+y+ycos(Θ) = (x+y) + (x+y)cos(Θ)
    5 + 5 * 4/5 = 9
    Anyone else used trigonometry and a system of equations like I did?

  • @malaren89
    @malaren89 4 ปีที่แล้ว +2

    The most beautiful thing I have seen in a while

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว

      Math
      Geometry problem
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

  • @rahulnanda2436
    @rahulnanda2436 4 ปีที่แล้ว +2

    Love your channel

  • @bwcbiz
    @bwcbiz 4 ปีที่แล้ว

    One of your better puzzles - no trig involved. Nice.

  • @ChocolateMilkCultLeader
    @ChocolateMilkCultLeader 4 ปีที่แล้ว

    Shows you don't need fancy things to have great problems

  • @gofer9156
    @gofer9156 4 ปีที่แล้ว

    I solved the problem similarly, but introduced the angle a at ADB and z:=BC. Then:
    2*(x+y)*sin(a)=6 and x+y+(x+y)*sin(a)=8 -> x+y=5.
    z=x+x*cos(a)+y+y*cos(a)=5+5*cos(a) -> z-5=5*cos(a)
    square the last and first equation, and add them together:
    (z-5)^2+3^2=(5*sin(a))^2+(5*cos(a))^2=5^2. Then solve for z - which comes out to 9.

  • @MohanySoliman
    @MohanySoliman 4 ปีที่แล้ว +1

    Good ..thanks

  • @tilotmavedi1245
    @tilotmavedi1245 3 ปีที่แล้ว

    With contents known much earlier, but in surviving texts dating from roughly the 100 years before common era, the Chinese text Zhoubi Suanjing (The Arithmetical Classic of the Gnomom) gives a reasoning for the Pythagorean theorem for the (3, 4, 5) triangle-in China it is called the "Gougu theorem"
    In India, the Baudhayana Shulba Sutra, the dates of which are given variously as between the 800 years before common era contains a list of Pythagorean triples and a statement of the Pythagorean theorem, both in the special case of the isosceles right triangle and in the general case, as does the Apastamba Shulba Sutra (c. 600 BC). Van der Waerden believed that this material "was certainly based on earlier traditions". Carl Boyer states that the Pythagorean theorem in the Śulba-sũtram may have been influenced by ancient Mesopotamian math, but there is no conclusive evidence in favor or opposition of this possibility.
    THEN WHY YOU CALLED PYTHAGORAS THEORAM AS GONGU; MENTION IT AS BAUDHAYANA THEORAM
    😏😏

  • @bernardwodoame9850
    @bernardwodoame9850 3 ปีที่แล้ว

    Wow I couldn't even think.

  • @bishamkumardanuwar9827
    @bishamkumardanuwar9827 4 ปีที่แล้ว +1

    It's amazing, thank you sir .

  • @abidahasnain2638
    @abidahasnain2638 4 ปีที่แล้ว +2

    Such an interactive and mind boggling question !

  • @mohdfaik
    @mohdfaik 4 ปีที่แล้ว

    If H is the height of the rectangle (given as 8), and L is the sum of the two chords (given as 6); then the general formula for W (Width of rectangle) is W=H-L/2+sqrt (H^2-H*L)

    • @Zembie1
      @Zembie1 2 ปีที่แล้ว +1

      Why u talking about squirtle on math

  • @MaxCreator
    @MaxCreator 4 ปีที่แล้ว +4

    1:26 Because a 6 always needs a 9

    • @einstein2.o383
      @einstein2.o383 3 ปีที่แล้ว

      Got the joke🤣🤣 u need both 6 and 9 to make 69 😂LMAO

  • @electeng6481
    @electeng6481 4 ปีที่แล้ว +2

    The Idea is to think lines if you want length.
    So Circles ... .: Radiuses
    The rest is a box of mathmatical tricks!

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว

      Math
      Geometry problem...
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

  • @omkarguha5183
    @omkarguha5183 4 ปีที่แล้ว

    Beautiful solution

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว

      Math
      Geometry problem.
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

  • @wushu1984
    @wushu1984 3 ปีที่แล้ว

    The second you said rectangle, I knew we were in for trouble

  • @cmyk8964
    @cmyk8964 3 ปีที่แล้ว +2

    I want someone to love me like Presh Tall Walker likes calling the “Pythagorean Theorem” any name except that

  • @rohitsavaliya1627
    @rohitsavaliya1627 4 ปีที่แล้ว +1

    Nice video editing...
    Which software is that.
    Explanation is very good.

  • @pandaaa2764
    @pandaaa2764 4 ปีที่แล้ว +1

    This solution is so amazing, i love it

  • @nishanth6403
    @nishanth6403 4 ปีที่แล้ว

    Beautiful solution.

  • @syk1102
    @syk1102 4 ปีที่แล้ว

    This is crazy i mean!!! Wow. I love the channel mind your decisions!

  • @dhananjayishwar7248
    @dhananjayishwar7248 4 ปีที่แล้ว +1

    Very nice sir

  • @xpqr12345
    @xpqr12345 4 ปีที่แล้ว +56

    Very interesting problem, with a neat solution.
    But I have a question: what do you use for the animations?

    • @matteoZattera
      @matteoZattera 4 ปีที่แล้ว +1

      i follow

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว +1

      Math
      Geometry problem
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

    • @bioloqgnc4953
      @bioloqgnc4953 4 ปีที่แล้ว +3

      U mean which programme? I wonder it too😉

    • @martincooper2175
      @martincooper2175 4 ปีที่แล้ว +1

      I’d guess it’s after effects, although I have no proof

    • @ndcj2
      @ndcj2 3 ปีที่แล้ว

      I guess GeoGebra

  • @cedrichung6820
    @cedrichung6820 4 ปีที่แล้ว +1

    so this is where skeppy finds the big words...

  • @TMSofficialchannel
    @TMSofficialchannel 4 ปีที่แล้ว

    Nice to see you

  • @catacoding1803
    @catacoding1803 4 ปีที่แล้ว

    Great video man
    And great question too

  • @ashrafhassan6610
    @ashrafhassan6610 4 ปีที่แล้ว +5

    Yes . 3 4 5 😉😀
    4:20

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว +1

      Math
      Geometry problem
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

    • @bioloqgnc4953
      @bioloqgnc4953 4 ปีที่แล้ว

      As piphagore😆i found it with closed eyes👌😍

  • @skmplanet9591
    @skmplanet9591 3 ปีที่แล้ว

    Key: Resolve Center to Center distance to Horizontal and Vertical arms.

  • @maruthasalamoorthiviswanat153
    @maruthasalamoorthiviswanat153 4 ปีที่แล้ว

    Wonderful solution sir.

  • @justpaulo
    @justpaulo 4 ปีที่แล้ว +22

    Hint for those scrolling down:
    - the diameter of the two circles adds up to 10

    • @wada-wada
      @wada-wada 4 ปีที่แล้ว

      sum of radii is 5

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว

      Math
      Geometry problem
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

  • @yousifkamaash5218
    @yousifkamaash5218 4 ปีที่แล้ว +1

    Also I remind you of my puzzle which i wrote it in my comment in video of the "Largest Cone puzzle " " pentagon inside triangle" thanks for this lecture ... and I wait answer of puzzle . with my best regards .

    • @mr.knight8967
      @mr.knight8967 4 ปีที่แล้ว

      Math
      Geometry problem
      One time see
      th-cam.com/video/j9wY3hso1WQ/w-d-xo.html

  • @tabletsmp2851
    @tabletsmp2851 3 ปีที่แล้ว +4

    Really great. I appreciate your knowledge about math puzzles. Could you please tell me which animation software are you using for these videos?

    • @THECUBER2023
      @THECUBER2023 ปีที่แล้ว +1

      obviously powerpoint

  • @AverageHandEnjoyer
    @AverageHandEnjoyer 4 ปีที่แล้ว +2

    *My Brain Before Answer* : You Can Do It Kid!
    *My Brain After Answer* : Wait Thats a Square!🤔

  • @maheshhegde7332
    @maheshhegde7332 4 ปีที่แล้ว

    Great video. All the videos in this channel are great . thanks for great videos

  • @GautamKumar-po7xs
    @GautamKumar-po7xs 3 ปีที่แล้ว

    A collection of golden questions, like ur idea

  • @zdrastvutye
    @zdrastvutye 4 ปีที่แล้ว

    By the way, the graphics does not show a rectangle, but a square. the diagonal line of a rectangle is not a symmetry axis. have fun
    10 lba=8:lef=6:sw=.1:goto 60
    20 r2=(lba-r1*(1+sqr(2)/2))/(1+sqr(2)/2)
    30 xs=r1*(sqr(2)/2+1):ys=lba-r1*(sqr(2)/2+1)
    40 ym1=lba-r1:ym2=ys-r2/sqr(2):ye=ym1+r1/sqr(2):yf=ym2+r2/sqr(2)
    45 dlu1=(ye-yf)/lef:dl=1-dlu1:return
    60 r1=sw:gosub 20
    61 dl1=dl:ru1=r1:r1=r1+sw:if r1>10*lef then stop
    62 ru2=r1:gosub 20:if dl1*dl>0 then 61
    70 r1=(ru1+ru2)/2:gosub 20:if dl1*dl>0 then ru1=r1 else ru2=r1
    80 if abs(dl)>1E-10 then 70
    90 print "r1=";r1;"r2=";r2
    www.imagebanana.com/s/1877/7bNnPfHU.html

  • @federicomaisch6812
    @federicomaisch6812 4 ปีที่แล้ว

    Thank you for sharing

  • @exponentmantissa5598
    @exponentmantissa5598 3 ปีที่แล้ว

    My take away is that x+y is always the same constant no matter what size the circles are. In other words the radii of two circle add up to a constant.

  • @ayblablabla
    @ayblablabla 3 ปีที่แล้ว

    My english is not enough to understand the terms but my math is strong enough to understand the things he do.

  • @yksogrencisi3596
    @yksogrencisi3596 3 ปีที่แล้ว

    Great problem and impressive solution.

  • @sarkerbrothers3087
    @sarkerbrothers3087 3 ปีที่แล้ว

    Thanks for this nice problem

  • @Foskya
    @Foskya 4 ปีที่แล้ว +3

    If this guy was less attention seeking it would be one of the best channel on TH-cam. Call things with their actual name

  • @dushyanthabandarapalipana5492
    @dushyanthabandarapalipana5492 2 ปีที่แล้ว

    Thanks!

  • @camerongray7767
    @camerongray7767 ปีที่แล้ว +1

    4:22 the what?
    The Pythagorean theorem does he mean? What was that word.