Dimension and Isomorphism

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 ธ.ค. 2024

ความคิดเห็น • 42

  • @winstonjiang3621
    @winstonjiang3621 4 ปีที่แล้ว +4

    i love this guy smiling explaining everything crystal clear.

  • @jingyiwang5113
    @jingyiwang5113 ปีที่แล้ว

    I have been stuck at this point for such a long time. Thank you so much for offering this wonderful video!

  • @_KASSIA_LLTTFGW
    @_KASSIA_LLTTFGW ปีที่แล้ว +1

    THANK YOU!! GOD BLESS UUU!

  • @Karthik-ys7mi
    @Karthik-ys7mi 3 ปีที่แล้ว

    ur videos make me realize how many holes are there in my understanding.. seriously!

  • @SimersTO
    @SimersTO 5 ปีที่แล้ว +2

    Thanks we just were given a lecture on isomorphism, please do videos on change of basis

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      Already on my playlists

  • @dgrandlapinblanc
    @dgrandlapinblanc 5 ปีที่แล้ว +1

    Thank you very much.

  • @MegaKotai
    @MegaKotai 5 ปีที่แล้ว +4

    You miss an important part. V and W have to be vector spaces over the same field (or at least the corresponding fields are isomorphic).
    M_(2x2) is also tricky because most of the time it is called a ring and as a ring it is not isomorphic to R^4 because R^4 is not a ring.

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      Of course

    • @TheTim466
      @TheTim466 5 ปีที่แล้ว +1

      Well we are not talking about rings here, so the fact that it can be understood as a ring with matrix multiplication as the operation does not matter here?

  • @duckymomo7935
    @duckymomo7935 5 ปีที่แล้ว +7

    Is dim(ℂ) = 2?
    ℝ² isomorphic to ℂ over ℝ

    • @ViktorKronvall
      @ViktorKronvall 5 ปีที่แล้ว

      Yes

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      Depends what your field is.

    • @ViktorKronvall
      @ViktorKronvall 5 ปีที่แล้ว

      Dr Peyam I thought the question specified the field to be the reals. In that case the dimensionality is 2, right?

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      Yeah

  • @user-jn4qk3qi4g
    @user-jn4qk3qi4g 3 ปีที่แล้ว +2

    Is there any similar criterion for showing that infinite dimensional spaces are isomorphic? Could this extend to uncountable cases?

  • @xy9439
    @xy9439 5 ปีที่แล้ว +1

    Appreciate your work :)

    • @kumarshanti4276
      @kumarshanti4276 ปีที่แล้ว

      Yes,smile makes understanding easy

  • @SmileyHuN
    @SmileyHuN 5 ปีที่แล้ว +3

    The Null(T) is basically the Ker(T)?

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว +2

      Yeah

  • @ListentoGallegos
    @ListentoGallegos 5 ปีที่แล้ว +1

    whoa! Dr Peyam rocking the rolex submariner?!

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      I wish!!! 😂😂😂

  • @channelnamechannel
    @channelnamechannel 5 ปีที่แล้ว

    does an isomorphism have to be a linear transformation? if not, couldn't you use a space-filling curve to define an invertible transformation from R to R^2, etc.?

    • @sugarfrosted2005
      @sugarfrosted2005 5 ปีที่แล้ว +1

      Yes it does. For something to be an isomorphism it must preserve operations by definition. In algebra there is a a concept of homorphism, where the operations are preserved under a function (so if we have a homorphism f and a + b = c, then f(a) + f(b) = f(c), for example.) In linear algebra, these are just linear maps.

    • @channelnamechannel
      @channelnamechannel 5 ปีที่แล้ว

      @@sugarfrosted2005 thank you!

  • @jdferreira
    @jdferreira 5 ปีที่แล้ว

    Does the set of 3-dimensional vectors (x, y, 1) qualify as a vector space? Why not?

    • @elfrate
      @elfrate 5 ปีที่แล้ว +7

      The vector (0,0,0) does not belong to that set, therefore it isn't a vector space.

  • @Nickesponja
    @Nickesponja 5 ปีที่แล้ว +1

    If two vectors fields are isomorphic they have the same cardinality? Is the reciprocal also true?

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว +2

      It depends what you mean by cardinality. R^2 has the same cardinality as R. That said, if the dimensions have the same cardinality, then I believe the answer is true

  • @eliyasne9695
    @eliyasne9695 5 ปีที่แล้ว +3

    At 7:38 : you must be carefull with the use of "wtf" , its an educational video!

    • @drscott1
      @drscott1 5 ปีที่แล้ว

      eliya sne ahh humor! 😂

    • @duckymomo7935
      @duckymomo7935 5 ปีที่แล้ว +1

      Want to find

  • @drscott1
    @drscott1 5 ปีที่แล้ว

    Thanks

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว +1

      You’re welcome, Dr 😄

  • @MrRyanroberson1
    @MrRyanroberson1 5 ปีที่แล้ว +1

    I mean... the surface of a sphere is isomorphic to its volume because PhYsIcS (if you added more and more stuff until the universe became a black hole the size of the universe, everything would be represented on the surface of the black hole, therefore the much much sparser real universe must be encodable on a sphere's surface)

  • @Cashman9111
    @Cashman9111 5 ปีที่แล้ว

    7:30 WTF ?!

    • @narutosaga12
      @narutosaga12 5 ปีที่แล้ว

      Cashman9111 want to find

    • @Karim-nq1be
      @Karim-nq1be ปีที่แล้ว

      It's the famous WTF theorem 🙂

  • @rigorless6330
    @rigorless6330 5 ปีที่แล้ว +8

    happy pride month heres a video about isomorphism 🏳️‍🌈

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว +4

      Happy pride month 🏳️‍🌈🏳️‍🌈🏳️‍🌈

    • @AhmedIsam
      @AhmedIsam 5 ปีที่แล้ว +5

      @@drpeyam A vid about homomorphism would be more appropriate

    • @M0rph1sm55
      @M0rph1sm55 5 ปีที่แล้ว

      Pride month is like a square matrix that is not invertible.