The Sample Variance and its Chi Squared Distribution

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ก.พ. 2025
  • We show that the sample variance has a chi-squared distribution.
    #mikethemathematician, #mikedabkowski, #profdabkowski, #statistics

ความคิดเห็น • 23

  • @darrenpeck156
    @darrenpeck156 5 หลายเดือนก่อน +2

    Awesome lecture. Thank you!!!😊

  • @armanavagyan1876
    @armanavagyan1876 ปีที่แล้ว

    Thanks PROF for UR regular publication)

  • @aflyingtoaster6096
    @aflyingtoaster6096 ปีที่แล้ว

    short and clear , thanks!

  • @strxngerr
    @strxngerr ปีที่แล้ว +1

    this helps me a lot, thanks!

    • @mikethemathematician
      @mikethemathematician  ปีที่แล้ว

      I’m glad! Thanks for watching! @strxngerr

    • @strxngerr
      @strxngerr ปีที่แล้ว

      ​@mikethemathematician if you don't mind, can you explain the last blue part?

  • @Harsh-Singh-3.141
    @Harsh-Singh-3.141 4 หลายเดือนก่อน +1

    Is there a reason you write X like that? 😅BTW this is a great video series! Would love it if you could expand this further into even deeper mathematical statistics or more on the applied side with econometrics methods etc.

    • @ZachRubinic
      @ZachRubinic หลายเดือนก่อน +1

      Probably to distinguish from χ

  • @NurbolBelyal
    @NurbolBelyal 7 หลายเดือนก่อน

    Awesome, this video helped me a lot 👍

  • @EngineeringSimplified
    @EngineeringSimplified ปีที่แล้ว

    Great video!

  • @charlesAcmen
    @charlesAcmen 4 หลายเดือนก่อน +1

    well this makes sense to me,but can some one plz tell me why the proof in my textbook just complicate it much more than this?It used orthogonal matrix to transform some random variables,and utilized some covariance matrices to get to the final point.

    • @mikethemathematician
      @mikethemathematician  4 หลายเดือนก่อน +2

      @charlesAcmen Thanks for the comment! I try to present the easiest approach that comes to my mind. Your textbook using orthogonal matrices is an indication of the power of linear algebra, so the authors probably want you to know that orthogonal matrices are incredibly useful in statistics... think about principal component analysis for example. In PCA you are trying to write linear combination of explanatory variables in such as way as to capture as much variance in the data set as possible while building new orthogonal variables!

    • @charlesAcmen
      @charlesAcmen 4 หลายเดือนก่อน

      @@mikethemathematician never thought u would reply(˃ ⌑ ˂ഃ ),thank you thank you

  • @darrenpeck156
    @darrenpeck156 5 หลายเดือนก่อน

    So the sample version drops down a single degree of freedom

  • @geolab6193
    @geolab6193 5 หลายเดือนก่อน

    \bar X and X_i are not independent. The additivity is a little problematic.

    • @mikethemathematician
      @mikethemathematician  5 หลายเดือนก่อน

      @geolab6193 You are correct that \bar X and X_i are positively correlated. We don't need any expected values in this proof, so that will not be an issue.Thanks for commenting!

    • @geolab6193
      @geolab6193 5 หลายเดือนก่อน

      @@mikethemathematician Thanks for your reply. My point is that when two chi-squared distributions are added to get a third one, the underlying normal distributions need to be independent, which is not the case here. So the last step of the proof seems not perfectly tight. The conclusion is still correct though. Thanks for the lectures.

    • @tomLathey
      @tomLathey 4 หลายเดือนก่อน

      @@geolab6193 Agreed. It seems that he is relying on a Corollary of Cochran's theorem from Cochran, 1934. I am not sure that the chi-squared subtraction property mentioned at 7:04 is true in general (I kind of doubt it).