Greek Mathematics Olympiad | 2008 Q2

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 ม.ค. 2025

ความคิดเห็น • 103

  • @leickrobinson5186
    @leickrobinson5186 4 ปีที่แล้ว +75

    “That’s going to be, like, 8 or something”? 😂🤣

    • @wise_math
      @wise_math 4 ปีที่แล้ว +3

      😅 yeah that sort of thing can be confusing for students. But overall good presentation.

    • @tomatrix7525
      @tomatrix7525 3 ปีที่แล้ว

      @@wise_math Haha, I love his style, personally.. Classic!

  • @goodplacetostop2973
    @goodplacetostop2973 4 ปีที่แล้ว +65

    12:55 Αυτό είναι ένα καλό μέρος για να σταματήσουμε
    More than 80k subs, let’s go! Here’s the daily...
    Considering the function f : ℝ → ℝ with these properties :
    - f(a + b) = f(a) + f(b), a and b being any real numbers
    - f(1) = 1
    - f(1/x) = (1/x²) • f(x), x being a non-zero real number
    Determine f and calculate f(1/√2020)

    • @KuroboshiHadar
      @KuroboshiHadar 4 ปีที่แล้ว +14

      f: R → R
      f(a+b) = f(a) + f(b)
      f(1) = 1
      f(1/x) = (1/x²)f(x) for all x ≠ 0
      Firstly, notice that f(a+0) = f(a) + f(0) = f(a) so f(0) = 0
      If p and q are non negative integers, we have
      → f(p*a) = f(a + a + ... + a) = p*f(a)
      → q*f(a/q) = f(a/q + a/q + ... + a/q) = f(a) → f(a/q) = f(a)/q
      Also, f(a-a) = f(a) + f(-a) = f(0) = 0 so f(-a) = -f(a)
      Now we can take r = p/q to be any rational number, and it will satisfy
      → f(r*a) = r * f(a)
      If a = 1, f(r) = r * f(1) = r
      Assuming f is continuous, this extends to all x in R since the rationals are dense in R, so
      f(x*1) = x*f(1) = x for all x in R
      Also, it satisfies
      f(1/x) = 1/x = 1/x² * f(x) = 1/x² * x = 1/x
      So f(x) = x
      f(1/√2020) = 1/√2020
      Did I do it right? I don't know if there are other functions that satisfy the conditions though...

    • @IanXMiller
      @IanXMiller 4 ปีที่แล้ว +3

      Or more trivially: f(x) = f(1+1+1+1+...+1)=f(1)+f(1)+f(1)+f(1)+..+f(1)=1+1+1+1+..+1=x so the only function is the identity function.

    • @mikelolis3750
      @mikelolis3750 4 ปีที่แล้ว +4

      change it to "Αυτό είναι ένα καλό μέρος για να σταματήσουμε"

    • @light9744
      @light9744 4 ปีที่แล้ว +4

      First, rewrite the function with f(x+c)=f(x)+f(c) where c be a constant and x be a variable. Then differentiate both side becoming f'(x+c)=f'(x) , which shows f'(x)=d where d is a constant. With this situation, we can conclude f(x)=ex+f where e, f are constants. As f(a+b)=f(a)+f(b) which shows e(a+b)+f=e(a+b)+2f , which leads to the result f=0. Then using f(1)=1, we can conclude f(x)=x. Therefore, f(1/√2020) is itself. (However, i don't know how to proof the function f(x) is differentiable or not, so the solution is with flaw. I hope someone else can do the proofing for me!)

    • @Pklrs
      @Pklrs 4 ปีที่แล้ว +2

      @@KuroboshiHadar assuming that f is continuous JUST at x=0, we can prove that f is continuous everywhere and then the rest of your proof you ve written

  • @tonyhaddad1394
    @tonyhaddad1394 4 ปีที่แล้ว +9

    What I love about your channel is that you are making many video in 1 day 😍😍😍

  • @andreivila7607
    @andreivila7607 4 ปีที่แล้ว +46

    Wow! I loved the problem! Nice use of the Sophie Germain identity. I would like to see more number theory problems on this channel! :)

    • @professorpoke
      @professorpoke 4 ปีที่แล้ว +5

      If you want good number theory problems, then this channel is a good to stop.

    • @TechToppers
      @TechToppers 4 ปีที่แล้ว

      Do you know? I saw thumbnail for 2 minutes and I solved the problem by intuition.(I got that Ms Sophie would help I mean)

    • @gilangNoDrop
      @gilangNoDrop 4 ปีที่แล้ว +1

      Yeah I solved it too by Sophie germain, we can prove that (x^4+2(2^(2^(x-2)))^2 - 2(x^2)(2^2^(x-2)) > 1 for x≥2

    • @TechToppers
      @TechToppers 4 ปีที่แล้ว

      @@gilangNoDrop
      Yup!

  • @HagenvonEitzen
    @HagenvonEitzen 4 ปีที่แล้ว +12

    08:00 Without reference to irrationality:
    Do x=-1 "by hand" and then:
    If x

  • @ИбадатЖұмабек
    @ИбадатЖұмабек 4 ปีที่แล้ว +3

    Nice problems and solutions

  • @parmilakumari3146
    @parmilakumari3146 4 ปีที่แล้ว +4

    Wow you find such cool NT contest problems

  • @acentasecond3721
    @acentasecond3721 4 ปีที่แล้ว +1

    great video, you gave me some inspiration for a future video!

  • @antoniopalacios8160
    @antoniopalacios8160 4 ปีที่แล้ว

    8:00 I think, actually there is a mistake with the parentheses. We have that for x=-1, 2^2^(-1)=0.25. To get sqrt(2) we need to put the parentheses 2^(2^(-1)). And so on for x=-2,-3,etc. Thank you.

    • @reeeeeplease1178
      @reeeeeplease1178 2 ปีที่แล้ว

      No, if you write x^y^z that notation means x^(y^z) instead of (x^y)^z.
      So something like 2^2^2^2 is evaluated from the "top" down:
      2^2^2^2 = 2^2^4 = 2^16 ~ 60,000
      If you want to do from the bottom up, you put parantheses:
      256 = 16^2 = (4^2)^2 = ((2^2)^2)^2

  • @demenion3521
    @demenion3521 4 ปีที่แล้ว

    for proving that y-z>1, we can almost factor it: y-z = x^8+2*2^(2^(x-1))-2*x^2*2^(2^(x-2)) = 1/2 {[x^4-2*2^(2^(x-2))]²+x^4}. as x obviously needs to be odd, the squared term is strictly greater than 0 and moreover an odd number. therefore y-z>=1/2 (1+x^4)>1 for all odd x>1.

  • @davidepierrat9072
    @davidepierrat9072 4 ปีที่แล้ว +3

    if p is prime, p and phi(phi(p)) are coprime so you can't get anything by crt so no need to even try looking at it mod stuff

  • @Kettwiesel25
    @Kettwiesel25 4 หลายเดือนก่อน

    x^4 = 1 mod 5 for all x by small Fermat. Thus the first summand is always 1 mod 5. The second one is 4 mod 5 though for x>1 since 2^2 is and 2^x is divisible by 4, thus 2^2^x =1 mod 5 as above. So the only interesting x is x=1 and x=0, which is where we get 1+16=17, a prime, and 0+2^3=8, a non-prime.

  • @wesleydeng71
    @wesleydeng71 4 ปีที่แล้ว +4

    Made the same first attempt and then switched to factoring.😀

  • @KaedennYT
    @KaedennYT 4 ปีที่แล้ว +1

    That orange chalk looks quite nice this time of year. You should use it more often! I find it easier to see than the white chalk for some reason, too.

  • @MrRyanroberson1
    @MrRyanroberson1 4 ปีที่แล้ว

    interesting little homework at the end. turns out when you factor to get y^2-z^2 the way you did, you do so exactly such that y+z and y-z are perfect squares themselves

  • @aldinofahreza
    @aldinofahreza 4 ปีที่แล้ว +3

    I trust that's only 1.. and you prove it 😂😂😂

  • @egillandersson1780
    @egillandersson1780 4 ปีที่แล้ว +3

    Damned ! I got the correct factorization but not the conclusion ☹️.
    Nice probleme and nice solution ! Thank you

  • @xchomphk.9788
    @xchomphk.9788 ปีที่แล้ว

    x = 1 holds, for x>=2, 2^x + 2 = 2 mod 4. Meaning that 2^(2^x+2) = 4 mod 5. Its easy to prove any x^8 is 1 mod 5 through trial and error, therefore for x>=2, the expression is divisible by 5 , therefore the only solution is x = 1. Honestly a really easy olympiad Q2 problem even for my standards

    • @СВЭП-и4ф
      @СВЭП-и4ф 4 หลายเดือนก่อน

      you don't cover case where x mod 5 = 0 and it is really the hard part in this solution, i was not able to prove this case.

    • @xchomphk.9788
      @xchomphk.9788 4 หลายเดือนก่อน

      @@СВЭП-и4ф oh shit im an idiot good catch

  • @TheQEDRoom
    @TheQEDRoom 4 ปีที่แล้ว +2

    can we simplify this by noting that p must be a sum of two squares so p must be of 1 mod 4? then it follows that x^8 is 1 mod 4 also.

    • @holomurphy22
      @holomurphy22 4 ปีที่แล้ว +4

      When x is odd we have x^2 = 1 mod 8. And here x is obviously odd. So its kind of trivial that x^8 is 1 mod 4

  • @jotaro6390
    @jotaro6390 4 ปีที่แล้ว +6

    I solved it!

  • @T6e6r6o
    @T6e6r6o 4 ปีที่แล้ว +7

    Math and flag nerd here, love all your videos. Just a little nitpick.
    Just like the flag of the United States, the union (ie. the stars part) of which, when displayed vertically, must be on the upper-left corner from the observer's perspective, the Greek flag's canton (ie. the cross part), when displayed vertically, must also be on the upper-left corner from the observer's perspective.

    • @justforfun2238
      @justforfun2238 4 ปีที่แล้ว

      nerd

    • @caesar_cipher
      @caesar_cipher 4 ปีที่แล้ว +1

      Sheldon Cooper presents Fun with Flags

    • @mondolee
      @mondolee 4 ปีที่แล้ว

      that’s interesting... does it mean that these flags when vertically viewed have to be mirrored?

    • @ErmisSouldatos
      @ErmisSouldatos 4 ปีที่แล้ว +1

      Also the stripes are horizontal

    • @ErmisSouldatos
      @ErmisSouldatos 4 ปีที่แล้ว +1

      The flag is turned around 90°

  • @fivestar5855
    @fivestar5855 3 ปีที่แล้ว

    My brain just burned out

  • @giuseppebassi7406
    @giuseppebassi7406 4 ปีที่แล้ว +1

    Wait wait. Since i have used many times the Sophie-germain identity, i have already thought about that when i saw the title. I did the same method, but i have been stuck to prove that y-z is bigger than 1 for all x>2. In fact, i tried that with induction but without results. How can this be so simple that he gave that to homework problem? 😟

    • @michaelcampbell6922
      @michaelcampbell6922 3 ปีที่แล้ว +2

      Set f(x)=y-z. Find f(3). Use f’(3) to show f(x) is increasing for x>=3.

  • @Tomyato
    @Tomyato 4 ปีที่แล้ว +6

    That’s powerful 🔥

  • @sayansircar360
    @sayansircar360 4 ปีที่แล้ว +1

    Make a video on madhava- Leibniz series

  • @jayvaghela9888
    @jayvaghela9888 4 ปีที่แล้ว +1

    Great work you deserve more likes, love from India 🇮🇳

  • @yla3727
    @yla3727 4 ปีที่แล้ว

    9:55 it looks like you used the formula of a^2 + b^2 = ( a + b )^2, which isn't correct as I learnt at school. I had checked your term and get bad result

    • @AnkhArcRod
      @AnkhArcRod 4 ปีที่แล้ว +2

      :) He used a^2 + b^2 = (a+b)^2 -2ab. In this case, the 2ab turns out to be a square as well.

    • @yla3727
      @yla3727 4 ปีที่แล้ว

      @@AnkhArcRod thanks and excuse me

  • @jkid1134
    @jkid1134 4 ปีที่แล้ว +1

    Good excuse for the colored chalk, I agree

  • @SB-wy2wx
    @SB-wy2wx 4 ปีที่แล้ว

    Could someone please expand on his reasoning for choosing mod 5, his "8 = 2×4, 4 = 5-1" is not making sense. Why cant u do 8 = 8×1, and 8 = 9-1, so choose mod 9? Sorry if question is stupid, just new to Number theory

    • @AlephThree
      @AlephThree 4 ปีที่แล้ว

      8 is not coprime to 2 so you can’t apply FLT

  • @keyanaskar1981
    @keyanaskar1981 4 ปีที่แล้ว

    You could have used sophie germain i dentity too ig?

  • @jkid1134
    @jkid1134 4 ปีที่แล้ว +7

    Can I copy somebody's homework?

  • @yashvardhan2093
    @yashvardhan2093 4 ปีที่แล้ว

    What I did was a little complicated
    I first showed that if x is negative then exponent of 2 is fractional and hence it is not an integer only. Then I got the solution for x=1.
    Then I proved that there exists no solution for x being even . Thus I proved x is odd
    But clearly if it’s odd it’s unit digit is 1,3,5,7,9 .
    By unit digit cyclicity if I showed that in case of
    1,3,7,9 unit digit of x^8 is 1 and that of the other part is 1 always thus the unit digit is 5 and hence divisible by 5. But when unit digit is 5 This didn’t work but then Sophie Germain struck me when I saw that 4 and remembered about the factorization

    • @yashvardhan2093
      @yashvardhan2093 4 ปีที่แล้ว

      There is mistype I showed that the unit digit of other part is 4

  • @the-hustle-guy
    @the-hustle-guy 4 ปีที่แล้ว +1

    Plz do this question
    Cube root of (5-x)=5-x³.

    • @IanXMiller
      @IanXMiller 4 ปีที่แล้ว +2

      You get three roots of a degree six polynomial, only one of which is real.

    • @mehmeterciyas6844
      @mehmeterciyas6844 4 ปีที่แล้ว +1

      @@IanXMiller no shit.

    • @erenozilgili4634
      @erenozilgili4634 4 ปีที่แล้ว

      @ゴゴ Joji Joestar ゴゴ I got to x^3 +x =5 part but how to solve it can you explain?

    • @blazedinfernape886
      @blazedinfernape886 4 ปีที่แล้ว

      @ゴゴ Joji Joestar ゴゴ It can be approached intutively because if f and f^-1 are continuous in an interval then f and f^-1 are images of each other with respect to y=x and an image and object can equal only at that line itself.

    • @blazedinfernape886
      @blazedinfernape886 4 ปีที่แล้ว

      @@erenozilgili4634 You can use newton method to approximate the solution because the roots of the polynomial are not very nice(one ugly real root and two complex uglier roots)

  • @antoniussugianto7973
    @antoniussugianto7973 4 ปีที่แล้ว +3

    Clearly Never prime for even x

    • @wise_math
      @wise_math 4 ปีที่แล้ว +1

      Right. But also have to consider the odds, and this is included in x >= 2.

  • @jonathanjacobson7012
    @jonathanjacobson7012 4 ปีที่แล้ว

    Can anyone recommend me a concise book that goes through the topics mentioned in this video? e.g. Fermat's little theorem, factorization, etc.

    • @stephenbeck7222
      @stephenbeck7222 4 ปีที่แล้ว +1

      For Fermat’s Little Theorem, I would look at an abstract algebra book. Plenty of good ones out there and you can google reviews. The factoring stuff is high school level computation plus a lot of intuition/cleverness which is mostly just Michael’s familiarity with contest problems.

    • @Miguel-xd7xp
      @Miguel-xd7xp 4 ปีที่แล้ว +1

      Maybe The Justin steven's website could help you

    • @jonathanjacobson7012
      @jonathanjacobson7012 4 ปีที่แล้ว

      @@Miguel-xd7xp not much material there, but thanks.

    • @Miguel-xd7xp
      @Miguel-xd7xp 4 ปีที่แล้ว

      @@jonathanjacobson7012 Also the AoPS (art of problem solving) can help, there are more people who can recommend a book

  • @marceliusmartirosianas6104
    @marceliusmartirosianas6104 4 ปีที่แล้ว

    8^x+2^x+2= [[[8x+4x]]= [[ 6x+6]]=[[ x =1 ]] marcelius mrtirosianas

  • @shreyathebest100
    @shreyathebest100 4 ปีที่แล้ว

    the factorisation wasnt so hard after all

  • @dertechl6628
    @dertechl6628 3 ปีที่แล้ว

    So let's see .. x raised to the power of snowman?

  • @raqmet
    @raqmet 4 ปีที่แล้ว

    Good video

  • @user-A168
    @user-A168 4 ปีที่แล้ว +1

    Good

  • @tilek4417
    @tilek4417 4 ปีที่แล้ว

    Sophie Germain

  • @benjaminbrat3922
    @benjaminbrat3922 4 ปีที่แล้ว +1

    Sophie Germain identity for the win =)

    • @mathissupereasy
      @mathissupereasy 4 ปีที่แล้ว

      What is it?

    • @ahuman6546
      @ahuman6546 4 ปีที่แล้ว +3

      @@mathissupereasy x⁴+4y⁴=(x²+2xy+2y²)(x²-2xy+2y²)

    • @km-pw2fi
      @km-pw2fi 4 ปีที่แล้ว

      But how would you apply it? The second term is always to the power of x and not 4?

  • @besusbb
    @besusbb 4 ปีที่แล้ว

    tootoo the tootoo the ex

  • @kenichimori8533
    @kenichimori8533 4 ปีที่แล้ว

    This problem solution is not even prime number.=0

  • @arkitson
    @arkitson 4 ปีที่แล้ว

    7:24 "None *IS rational" ;)

  • @jawaduddin4244
    @jawaduddin4244 4 ปีที่แล้ว

    x=1 is one solution without watching the vid. 1^8 + 2^2^1 + 2 = 1+4+2= 7
    And 7 is prime