Как хитро Вы поймали зрителей! При верных выкладках в математике (которые точно будут проверять) заложить ошибку орфографическую! "Радуемся правильно решённой (дательный падеж) задач ̲е̲ "
уравнение увидел и на автомате стал решать методом неопределенных коэффициентов, приведенное ур. 4-ой степени раскладывается по формуле: (x^2+ax+b)(x^2+cx+d)=x^4+(a+c)x^3+(b+d+ac)x^2+bd. Получается система: a+c=1 b+d+ac=-1 ad+bc=-2 bd=-2 Решать проще с последнего ур., берем b=-2, d=1 (можно наоборот) и все устно решается: (x^-2)(x^2+x+1)=0
Ну нет рациональных нулей, зато иррациональные мне нравятся. X=+-sqrt2. Дальше нужно раскладывать на множители и приравнивать к 0. Получится (x^2-2)×(x^2+x+1)=0. Кстати, а почему не искать нули среди корней из свободного члена?
Как хитро Вы поймали зрителей! При верных выкладках в математике (которые точно будут проверять) заложить ошибку орфографическую!
"Радуемся правильно решённой (дательный падеж) задач ̲е̲ "
уравнение увидел и на автомате стал решать методом неопределенных коэффициентов, приведенное ур. 4-ой степени раскладывается по формуле: (x^2+ax+b)(x^2+cx+d)=x^4+(a+c)x^3+(b+d+ac)x^2+bd. Получается система:
a+c=1
b+d+ac=-1
ad+bc=-2
bd=-2
Решать проще с последнего ур., берем b=-2, d=1 (можно наоборот) и все устно решается:
(x^-2)(x^2+x+1)=0
Откуда вы берете вот эти уравнения?
Ну нет рациональных нулей, зато иррациональные мне нравятся. X=+-sqrt2. Дальше нужно раскладывать на множители и приравнивать к 0. Получится (x^2-2)×(x^2+x+1)=0. Кстати, а почему не искать нули среди корней из свободного члена?